Habitat thermal quality for Gopherus evgoodei in tropical deciduous forest and consequences of habitat modification by buffelgrass.

J Therm Biol

Laboratorio de Herpetología, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Coyoacán, A.P. 70515, C.P, 04510, Mexico.

Published: February 2022

Tortoises of the genus Gopherus evolved in North America and have survived major environmental challenges in the past 40 million years. However, this genus now faces multiple anthropogenic threats, such as the introduction of invasive plant species. Buffelgrass (Cenchrus ciliaris) is considered one of the greatest threats to arid and tropical ecosystems, where gopher tortoises inhabit, because the grass displaces native flora and fauna. Modification of the environment as a result of this invasive plant portends an alteration of the available thermal landscape. The aim of this paper is twofold: 1) to evaluate the thermal quality of the primary habitat of Gopherus evgoodei (tropical deciduous forest [TDF], and 2) determine the potential thermal changes due to habitat modification by buffelgrass. First, we obtained data on body temperature of active tortoises in semi-captivity. Second, we measured the operative environmental temperature during 5 years at three sites south of Sonora, Mexico that support G. evgoodei: a) a pristine TDF (Conserved-TDF); b) a forest patch surrounded by introduced buffelgrass pasture (Partial-TDF); and c) an introduced buffelgrass pasture area (Buffel-Pasture). Our results demonstrate that the intact microhabitats within the TDF provide G. evgoodei with high thermal quality at both spatial and temporal scales. However modified habitat by buffelgrass had higher operative temperatures for G. evgoodei than TDF. The thermal quality of the sites disturbed with buffelgrass can exceed the thermal requirements of G. evgoodei by up to 25 °C. Finally, we discussed potential collateral effects of habitat modification by invasion by buffelgrass.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtherbio.2022.103192DOI Listing

Publication Analysis

Top Keywords

thermal quality
16
habitat modification
12
gopherus evgoodei
8
evgoodei tropical
8
tropical deciduous
8
deciduous forest
8
buffelgrass
8
modification buffelgrass
8
invasive plant
8
introduced buffelgrass
8

Similar Publications

Animal-based foods such as meat, dairy, and eggs contain abundant essential proteins, vitamins, and minerals that are crucial for human nutrition. Therefore, there is a worldwide growing demand for animal-based products. Since animal-based foods are vital resources of nutrients, it is essential to ensure their microbial safety which may not be ensured by traditional food preservation methods.

View Article and Find Full Text PDF

Hydrothermal sediments host phylogenetically diverse and physiologically complex microbial communities. Previous studies of microbial community structure in hydrothermal sediments have typically used short-read sequencing approaches. To improve on these approaches, we use LoopSeq, a high-throughput synthetic long-read sequencing method that has yielded promising results in analyses of microbial ecosystems, such as the human gut microbiome.

View Article and Find Full Text PDF

Tunable photoluminescence and energy transfer in Dy and Eu co-doped NaCaGd(WO) phosphors for pc-WLED applications.

Dalton Trans

January 2025

Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Metallurgical and Materials Engineering, Glass Research and Development Laboratory, Istanbul, 34220, Türkiye.

Elevated temperatures can lead to reabsorption and color drift, compromising the quality of phosphor-converted white light-emitting diode (pc-WLED) devices. To ensure the performance of WLEDs under these conditions, it is essential to develop luminescent materials that maintain stable color. Consequently, there is a pressing need for single-phase white-emitting phosphors with robust chromatic stability.

View Article and Find Full Text PDF

During surgical procedures, skin and soft tissue wounds are often infected by resistant strains of gram-positive bacteria and gram-negative bacteria, resulting in serious obstacles to the healing of these wounds. Commercially available dressings for such wounds are still insufficient to combat resistant infections. Here, we designed vancomycin and epigallocatechin gallate (EGCG) loaded poly(vinyl)-pyrrolidone-gelatine nanofiber's membrane dressing for potential synergistic efficiency against infected post-surgical wounds.

View Article and Find Full Text PDF

Tuning multi-scale pore structures in carbonaceous films via direct ink writing and sacrificial templates for efficient indoor formaldehyde removal.

J Hazard Mater

January 2025

Key Laboratory of Coastal Urban Resilient Infrastructures (Ministry of Education), College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Department of Building Science, Tsinghua University, Beijing 100084, China; State Key Laboratory of Intelligent Geotechnics and Tunnelling, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Subtropical Building and Urban Science, Shenzhen 518060, China; Key Laboratory of Eco Planning & Green Building (Tsinghua University), Ministry of Education, Beijing 100084, China. Electronic address:

The primary challenges impeding the extensive application of adsorption for indoor air purification have been low efficiency and effective capacity. To fill the research gap, we developed carbonaceous net-like adsorption films featuring multi-scale porous structures for efficient indoor formaldehyde removal. By optimizing the interfacial mass transfer and internal diffusion, we designed macro- to mesoscale meshes on the film surface and micro- to nano-scale pores within the materials, which were achieved by direct-ink-writing (DIW) printing and sacrificial template methods, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!