Cardiovascular complications are the main cause of mortality and morbidity in the diabetic patients, in whom changes in myocardial structure and function have been described. Numerous molecular mechanisms have been proposed that could contribute to the development of a cardiac damage. In this regard, angiotensin II (Ang II), a proinflammatory peptide that constitutes the main effector of the renin-angiotensin system (RAS) has taken a relevant role. The aim of this review was to analyze the role of Ang II in the different biochemical pathways that could be involved in the development of cardiovascular damage during diabetes. We performed an exhaustive review in the main databases, using the following terms: angiotensin II, cardiovascular damage, renin angiotensin system, inflammation, and diabetes mellitus. Classically, the RAS has been defined as a complex system of enzymes, receptors, and peptides that help control the blood pressure and the fluid homeostasis. However, in recent years, this concept has undergone substantial changes. Although this system has been known for decades, recent discoveries in cellular and molecular biology, as well as cardiovascular physiology, have introduced a better understanding of its function and relationship to the development of the diabetic cardiomyopathy.

Download full-text PDF

Source
http://dx.doi.org/10.2478/enr-2022-0007DOI Listing

Publication Analysis

Top Keywords

cardiovascular damage
8
diabetes heart
4
damage
4
heart damage
4
angiotensin
4
damage angiotensin
4
angiotensin relationship
4
relationship link
4
link them?
4
them? minireview
4

Similar Publications

ECM Modifications Driven by Age and Metabolic Stress Directly Promote the Vascular Smooth Muscle Cell Osteogenic Processes.

Arterioscler Thromb Vasc Biol

January 2025

British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, United Kingdom. (M.W., M.F., R.O., L.S., M.M., C.M.S.).

Background: The ECM (extracellular matrix) provides the microenvironmental niche sensed by resident vascular smooth muscle cells (VSMCs). Aging and disease are associated with dramatic changes in ECM composition and properties; however, their impact on the VSMC phenotype remains poorly studied.

Methods: Here, we describe a novel in vitro model system that utilizes endogenous ECM to study how modifications associated with age and metabolic disease impact the VSMC phenotype.

View Article and Find Full Text PDF

Endogenous C-type natriuretic peptide offsets the pathogenesis of steatohepatitis, hepatic fibrosis, and portal hypertension.

PNAS Nexus

January 2025

Faculty of Medicine and Dentistry, William Harvey Research Institute, Barts and The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom.

Metabolic dysfunction-associated steatotic liver disease (MASLD), hepatic fibrosis, and portal hypertension constitute an increasing public health problem due to the growing prevalence of obesity and diabetes. C-type natriuretic peptide (CNP) is an endogenous regulator of cardiovascular homeostasis, immune cell reactivity, and fibrotic disease. Thus, we investigated a role for CNP in the pathogenesis of MASLD.

View Article and Find Full Text PDF

L., a member of the Cannabaceae family, has been thoroughly investigated for its diverse therapeutic properties, primarily attributed to cannabinoids such as delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD). Secondary, metabolites like terpenes also exhibit pharmacological effects.

View Article and Find Full Text PDF

A 17-year-old Japanese boy was admitted to our hospital with intermittent claudication. He belonged to a weightlifting team at a high school. He had occasionally dropped lightweight lifting weights on his right foot.

View Article and Find Full Text PDF

Protective effects of wogonin in the treatment of central nervous system and degenerative diseases.

Brain Res Bull

January 2025

Department of Neurology, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, 330006 Nanchang, Jiangxi, China. Electronic address:

Wogonin, an O-methylated flavonoid extracted from Scutellaria baicalensis, has demonstrated profound neuroprotective effects in a range of central nervous system (CNS) diseases. This review elucidates the pharmacological mechanisms underlying the protective effects of wogonin in CNS diseases, including ischemic stroke, hemorrhagic stroke, traumatic brain injury, epilepsy, anxiety, neurodegenerative diseases, and CNS infections. Wogonin modulates key signaling pathways, such as the MAPK, NF-κB, and ROS pathways, contributing to its anti-inflammatory, antioxidant, and antiapoptotic properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!