The reverse transcription-polymerase chain reaction (RT-PCR) test is considered the current gold standard for the detection of coronavirus disease (COVID-19), although it suffers from some shortcomings, namely comparatively longer turnaround time, higher false-negative rates around 20-25%, and higher cost equipment. Therefore, finding an efficient, robust, accurate, and widely available, and accessible alternative to RT-PCR for COVID-19 diagnosis is a matter of utmost importance. This study proposes a complete blood count (CBC) biomarkers-based COVID-19 detection system using a stacking machine learning (SML) model, which could be a fast and less expensive alternative. This study used seven different publicly available datasets, where the largest one consisting of fifteen CBC biomarkers collected from 1624 patients (52% COVID-19 positive) admitted at San Raphael Hospital, Italy from February to May 2020 was used to train and validate the proposed model. White blood cell count, monocytes (%), lymphocyte (%), and age parameters collected from the patients during hospital admission were found to be important biomarkers for COVID-19 disease prediction using five different feature selection techniques. Our stacking model produced the best performance with weighted precision, sensitivity, specificity, overall accuracy, and F1-score of 91.44%, 91.44%, 91.44%, 91.45%, and 91.45%, respectively. The stacking machine learning model improved the performance in comparison to other state-of-the-art machine learning classifiers. Finally, a nomogram-based scoring system (QCovSML) was constructed using this stacking approach to predict the COVID-19 patients. The cut-off value of the QCovSML system for classifying COVID-19 and Non-COVID patients was 4.8. Six datasets from three different countries were used to externally validate the proposed model to evaluate its generalizability and robustness. The nomogram demonstrated good calibration and discrimination with the area under the curve (AUC) of 0.961 for the internal cohort and average AUC of 0.967 for all external validation cohort, respectively. The external validation shows an average weighted precision, sensitivity, F1-score, specificity, and overall accuracy of 92.02%, 95.59%, 93.73%, 90.54%, and 93.34%, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839805PMC
http://dx.doi.org/10.1016/j.compbiomed.2022.105284DOI Listing

Publication Analysis

Top Keywords

machine learning
16
stacking machine
12
covid-19
8
covid-19 detection
8
detection system
8
cbc biomarkers
8
learning model
8
validate proposed
8
proposed model
8
weighted precision
8

Similar Publications

GnRH pulse generator activity in mouse models of polycystic ovary syndrome.

Elife

January 2025

Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.

One in ten women in their reproductive age suffer from polycystic ovary syndrome (PCOS) that, alongside subfertility and hyperandrogenism, typically presents with increased luteinizing hormone (LH) pulsatility. As such, it is suspected that the arcuate kisspeptin (ARN) neurons that represent the GnRH pulse generator are dysfunctional in PCOS. We used here in vivo GCaMP fiber photometry and other approaches to examine the behavior of the GnRH pulse generator in two mouse models of PCOS.

View Article and Find Full Text PDF

To use electronic health record (EHR) data to develop a scalable and transferrable model to predict 6-month risk for diabetic ketoacidosis (DKA)-related hospitalization or emergency care in youth with type 1 diabetes (T1D). To achieve a sharable predictive model, we engineered features using EHR data mapped to the T1D Exchange Quality Improvement Collaborative's (T1DX-QI) data schema used by 60+ U.S.

View Article and Find Full Text PDF

Spontaneous intracranial artery dissection (sIAD) is the leading cause of stroke in young individuals. Identifying high-risk sIAD cases that exhibit symptoms and are likely to progress is crucial for treatment decision-making. This study aimed to develop a model relying on circulating biomarkers to discriminate symptomatic sIADs.

View Article and Find Full Text PDF

Blood pressure (BP) is one of the vital physiological parameters, and its measurement is done routinely for almost all patients who visit hospitals. Cuffless BP measurement has been of great research interest over the last few years. In this paper, we aim to establish a method for cuffless measurement of BP using ultrasound.

View Article and Find Full Text PDF

Metabolism in vivo turns small molecules (e.g., drugs) into metabolites (new molecules), which brings unexpected safety issues in drug development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!