Background: Stem cells are used as an alternative treatment option for patients with congenital heart disease (CHD) due to their regenerative potential, but they are subject to low retention rate in the injured myocardium. Also, the diseased microenvironment in the injured myocardium may not provide healthy cues for optimal stem cell function.

Objective: In this study, we prepared a novel human-derived cardiac scaffold to improve the functional behaviors of stem cells.

Methods: Decellularized extracellular matrix (ECM) scaffolds were fabricated by removing cells of human-derived cardiac appendage tissues. Then, bone marrow c-kit+ progenitor cells from patients with congenital heart disease were seeded on the cardiac ECM scaffolds. Cell adhesion, survival, proliferation and cardiac differentiation on human cardiac decellularized ECM scaffold were evaluated in vitro. Label-free mass spectrometry was applied to analyze cardiac ECM proteins regulating cell behaviors.

Results: It was shown that cardiac ECM scaffolds promoted stem cell adhesion and proliferation. Importantly, bone marrow c-kit+ progenitor cells cultured on cardiac ECM scaffold for 14 days differentiated into cardiomyocyte-like cells without supplement with any inducible factors, as confirmed by the increased protein level of Gata4 and upregulated gene levels of Gata4, Nkx2.5, and cTnT. Proteomic analysis showed the proteins in cardiac ECM functioned in multiple biological activities, including regulation of cell proliferation, regulation of cell differentiation, and cardiovascular system development.

Conclusion: The human-derived cardiac scaffold constructed in this study may help repair the damaged myocardium and hold great potential for tissue engineering application in pediatric patients with CHD.

Download full-text PDF

Source
http://dx.doi.org/10.3233/BME-211368DOI Listing

Publication Analysis

Top Keywords

cardiac ecm
20
bone marrow
12
patients congenital
12
congenital heart
12
heart disease
12
human-derived cardiac
12
ecm scaffolds
12
cardiac
11
decellularized extracellular
8
extracellular matrix
8

Similar Publications

Biomarkers of RV Dysfunction in HFrEF Identified by Direct Tissue Proteomics: Extracellular Proteins Fibromodulin and Fibulin-5.

Circ Heart Fail

January 2025

First Faculty of Medicine, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University (BIOCEV), Charles University, Prague, Czech Republic. (M.B., D.L., O.V., J.P.).

Background: Right ventricular dysfunction (RVD) is common in patients with heart failure with reduced ejection fraction, and it is associated with poor prognosis. However, no biomarker reflecting RVD is available for routine clinical use.

Methods: Proteomic analysis of myocardium from the left ventricle and right ventricle (RV) of patients with heart failure with reduced ejection fraction with (n=10) and without RVD (n=10) who underwent heart transplantation was performed.

View Article and Find Full Text PDF

ECM Modifications Driven by Age and Metabolic Stress Directly Promote the Vascular Smooth Muscle Cell Osteogenic Processes.

Arterioscler Thromb Vasc Biol

January 2025

British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, United Kingdom. (M.W., M.F., R.O., L.S., M.M., C.M.S.).

Background: The ECM (extracellular matrix) provides the microenvironmental niche sensed by resident vascular smooth muscle cells (VSMCs). Aging and disease are associated with dramatic changes in ECM composition and properties; however, their impact on the VSMC phenotype remains poorly studied.

Methods: Here, we describe a novel in vitro model system that utilizes endogenous ECM to study how modifications associated with age and metabolic disease impact the VSMC phenotype.

View Article and Find Full Text PDF

Fibrosis represents a terminal pathological manifestation encountered in numerous chronic diseases. The process involves the persistent infiltration of inflammatory cells, the transdifferentiation of fibroblasts into myofibroblasts, and the excessive deposition of extracellular matrix (ECM) within damaged tissues, all of which are characteristic features of organ fibrosis. Extensive documentation exists on fibrosis occurrence in vital organs such as the liver, heart, lungs, kidneys, and skeletal muscles, elucidating its underlying pathological mechanisms.

View Article and Find Full Text PDF

Background: Cardiac AL and ATTR are potentially fatal cardiomyopathies. Current therapies do not address mechanisms of tissue dysfunction because these remain unknown. Our prior work focused on the amyloid plaque proteome, which may not capture tissue-wide proteomic alterations.

View Article and Find Full Text PDF

The Complex Role of Matrix Metalloproteinase-2 (MMP-2) in Health and Disease.

Int J Mol Sci

December 2024

Pittsburgh Heart, Lung and Blood Vascular Medicine Institute (VMI), University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.

Matrix metalloproteinase-2 (MMP-2), a zinc-dependent enzyme, plays a critical role in the degradation and remodeling of the extracellular matrix (ECM). As a member of the gelatinase subgroup of matrix metalloproteinases, MMP-2 is involved in a variety of physiological processes, including tissue repair, wound healing, angiogenesis, and embryogenesis. It is primarily responsible for the degradation of type IV and V collagen, fibronectin, laminin, and elastin, which are essential components of the ECM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!