A typical NLR gene, Sl5R-1, which regulates Tomato spotted wilt virus resistance, was fine mapped to a region less than 145 kb in the tomato genome. Tomato spotted wilt is a viral disease caused by Tomato spotted wilt virus (TSWV), which is a devastating disease that affects tomato (Solanum lycopersicum) production worldwide, and the resistance provided by the Sw-5 gene has broken down in some cases. In order to identify additional genes that confer resistance to TSWV, the F population was mapped using susceptible (M82) and resistant (H149) tomato lines. After 3 years of mapping, the main quantitative trait locus on chromosome 05 was narrowed to a genomic region of 145 kb and was subsequently identified by the F population, with 1971 plants in 2020. This region encompassed 14 candidate genes, and in it was found a gene cluster consisting of three genes (Sl5R-1, Sl5R-2, and Sl5R-3) that code for NBS-LRR proteins. The qRT-PCR and virus-induced gene silencing approach results confirmed that Sl5R-1 is a functional resistance gene for TSWV. Analysis of the Sl5R-1 promoter region revealed that there is a SlTGA9 transcription factor binding site caused by a base deletion in resistant plants, and its expression level was significantly up-regulated in infected resistant plants. Analysis of salicylic acid (SA) and jasmonic acid (JA) levels and the expression of SA- and JA-regulated genes suggest that SlTGA9 interacts or positively regulates Sl5R-1 to affect the SA- and JA-signaling pathways to resist TSWV. These results demonstrate that the identified Sl5R-1 gene regulates TSWV resistance by its own promoter interacting with the transcription factor SlTGA9.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00122-022-04049-4 | DOI Listing |
Pest Manag Sci
December 2024
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.
Background: Tomato-spotted wilt virus (TSWV) from the Tospovirus genus affects over 1000 plant species, including key crops, and traditional control methods often prove inadequate. This study investigates the effectiveness of Bacillus amyloliquefaciens and Bacillus subtilis in reducing TSWV infection, enhancing plant growth, and strengthening defense in Nicotiana benthamiana. The aim is to assess Bacillus as a sustainable biocontrol alternative, offering an eco-friendly solution for managing TSWV disease in agriculture.
View Article and Find Full Text PDFPlant Dis
December 2024
Honghe University, College of Biological and Agricultural Sciences, Mengzi, Yunnan, China;
The Asteraceae family plant Erigeron breviscapus (Vant.) Hand.-Mazz.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Gene Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea.
Due to the vulnerability of pepper ( spp.) and the virulence of tomato spotted wilt virus (TSWV), seasonal shortages and surges of prices are a challenge and thus threaten household income. Traditional bioassays for detecting TSWV, such as observation for symptoms and reverse transcription-PCR, are time-consuming, labor-intensive, and sometimes lack precision, highlighting the need for a faster and more reliable approach to plant disease assessment.
View Article and Find Full Text PDFPLoS One
December 2024
Yunnan Provincial Key Lab of Agricultural Biotechnology, Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Kunming, China.
Tomato spotted wilt orthotospovirus (TSWV) is one of the most destructive pathogens and causes serious losses in agriculture worldwide. Biogenic pesticides application may be an effective approach for defending against TSWV. Tagitinin A (Tag A) extracted from Tithonia diversifolia (Hemsl.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA.
Tomato spotted wilt virus (TSWV) is transmitted by insect pests from the Thripidae family, including Frankliniella occidentalis, commonly known as western flower thrips. For experimental purposes, researchers have developed methods for inoculating host plants with TSWV, allowing thrips to acquire TSWV, and verifying thrips acquisition. Plants can be inoculated with TSWV either mechanically or with thrips in the lab, but in nature, the virus is transmitted by thrips.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!