In this work, quartz crystal microbalance with dissipation monitoring (QCM-D) was used to develop a new method to evaluate the protein repellency of microgel coatings. Compared to traditional protocols for surface analysis, QCM has the advantage of a real-time quantitative approach with high sensitivity, allowing us to describe variations of the adsorbed mass with unprecedented accuracy. To enable the detectability of the film throughout the whole operational temperature interval, a poly(-isopropylacrylamide--glycidyl methacrylate) p(NIPAm--GMA) microgel monolayer with defined thickness and rigidity was designed. Covalent adhesion of the film to the silica surface was achieved by epoxy-thiol click chemistry and tested for repeated temperature cycles, showing substantial reproducibility. Further functionalization of microgel surfaces by grafting polyzwitterionic chains remarkably improved the protein repellence leaving the strong surface adhesion unaltered. Before and after exposure to fluorescein-tagged bovine serum albumin (FITC-BSA), the coatings showed identical responsive behavior, proving the absence of protein deposition. In nonrepellent coatings, QCM monitoring instead displayed a characteristic shift in the volume phase transition (VPT), pointing out the effect of adsorbed proteins on the swelling behavior of pNIPAm. The combination of QCM-D and UV-visible (UV-vis) was used to evaluate the effect of increasing surface coverage, enabling to distinguish between the protein deposition occurring over the coated and the uncoated portion of the sensor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c21814 | DOI Listing |
Langmuir
January 2025
Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India.
Herein, we present a novel liquid crystal (LC)-based sensing platform utilizing microgel-stabilized Pickering LC droplets dispersed in water for simple and label-free detection of proteins in an aqueous environment. This could be achieved by tailoring the surface of 4-cyano-4'-pentylbiphenyl (5CB) LC droplets dispersed in aqueous medium through the interfacial adsorption of poly(-isopropylacrylamide) (PNIPAM) microgel particles, followed by the introduction of model surfactants, such as anionic sodium dodecyl sulfate and cationic dodecyltrimethylammonium bromide. These surfactant/microgel complex-coated LC droplets underwent a configurational transition from radial-to-bipolar under a polarized optical microscope, upon exposure to model proteins, namely bovine serum albumin and lysozyme.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States.
Rapid evolution of smart devices necessitates high-performance, lightweight materials for effective electromagnetic interference (EMI) shielding. TiCT MXene nanosheets are promising for such applications, yet the high solid content typically required for 3D-printable MXene inks limits their scalability and cost efficiency. In this study, we present an MXene-based ink with an ultralow solid content (0.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China. Electronic address:
The spontaneous self-organization of naturally-occurring polysaccharide particles into a thick and robust gel network at interface in Pickering emulsion is challenging. Inspired by the phenomenon that chitosan microgels (CSMs) with a certain size could self-associate into a solidified gel phase upon freezing, here we tentatively used CSMs to construct a highly-stable Pickering emulsion. CSMs can form a stable Langmuir's layer at the water/oil interface through the network deformation and re-arrangement of dangling chains, while the subsequent negative polymer coating can avoid the bridging resulting from the cross-association for CSMs on different emulsion droplets upon freezing.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
Rheology describes the flow of fluids from food and plastics, to coatings, adhesives, and 3D printing inks, and is commonly denoted by viscosity alone as a simplification. While viscometers adequately probe Newtonian (constant) viscosity, most fluids have complex viscosity, requiring tests over multiple shear rates, and transient measurements. As a result, rheometers are typically large, expensive, and require additional infrastructure (e.
View Article and Find Full Text PDFFood Chem
February 2025
State Key Laboratory of Food Science and Resource, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!