We describe the oxygenation of tertiary arylamines, and the amination of tertiary arylamines and phenols. The key step of these coupling reactions is an iron-catalyzed oxidative C-O or C-N bond formation which generally provides the corresponding products in high yields and with excellent regioselectivity. The transformations are accomplished using hexadecafluorophthalocyanine-iron(II) (FePcF ) as catalyst in the presence of an acid or a base additive and require only ambient air as sole oxidant.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9314016PMC
http://dx.doi.org/10.1002/chem.202104292DOI Listing

Publication Analysis

Top Keywords

iron-catalyzed oxidative
8
oxidative c-o
8
c-o c-n
8
coupling reactions
8
air sole
8
sole oxidant
8
tertiary arylamines
8
c-n coupling
4
reactions air
4
oxidant describe
4

Similar Publications

The role of histidine buffer in the iron-catalyzed formation of oxidizing species in pharmaceutical formulations: Mechanistic studies.

J Pharm Sci

January 2025

Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047, USA. Electronic address:

Iron-catalyzed oxidation reactions are common degradation pathways in pharmaceutical formulations. Buffers can influence oxidation reactions promoted by iron (Fe) and hydrogen peroxide (H₂O₂). However, mechanistically, the specific role of buffers in such reactions is not well understood.

View Article and Find Full Text PDF

Iron-Catalyzed Aerobic Carbonylation of Methane via Ligand-to-Metal Charge Transfer Excitation.

J Am Chem Soc

January 2025

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China.

The integration of ligand-to-metal charge transfer (LMCT) catalytic paradigms with radical intermediates has transformed the selective functionalization of inert C-H bonds, facilitating the use of nonprecious metal catalysts in demanding transformations. Notably, aerobic C-H carbonylation of methane to acetic acid remains formidable due to the rapid oxidation of methyl radicals, producing undesired C1 oxygenates. We present an iron terpyridine catalyst utilizing LMCT to achieve exceptional C2/C1 selectivity through synergistic photoexcitation, methyl radical generation, and carbonylation.

View Article and Find Full Text PDF

The kidney plays an important role in iron homeostasis and mesangial cells (MCs) are phagocytic cells important for glomerular homeostasis. Sickle hemoglobin (HbS) modulators are promising clinical candidates for treatment of sickle cell disease. Although they prevent disease pathophysiology of HbS polymerization and red blood cell (RBC) sickling by increasing hemoglobin oxygen affinity, higher oxygen affinity can also cause transient tissue hypoxia with compensatory increases in erythropoiesis and subsequent increases in RBC turnover.

View Article and Find Full Text PDF

Impact of citrate on mitigating iron mediated polysorbate 80 degradation in biotherapeutic formulation placebos.

J Pharm Sci

November 2024

Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ 07065, USA.

Polysorbate 80 (PS80), a widely used polymeric surfactant in biotherapeutic formulation, possesses a unique structural composition that effectively prevents protein aggregation in highly concentrated protein drug formulations. However, PS80 is susceptible to hydrolysis, due to the presence of fatty acid esters that can be enzymatically hydrolyzed, The unsaturated bonds in the fatty acids are prone to oxidative degradation when exposed to air, especially in the presence of transition metals such as iron and copper, which may be introduced during production and purification processes or from contamination in raw materials used in drug formulation. The degradation of PS80, particularly through metal-mediated oxidative degradation, poses a significant challenge for the industry.

View Article and Find Full Text PDF

Mechanistic characterization of iron-catalyzed oxidation of polysorbate 80: The role of ferrous iron, hydrogen peroxide, and superoxide.

J Pharm Sci

November 2024

Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047, USA. Electronic address:

We investigated the role of individual radical species during Fe-catalyzed oxidation of PS80. Solutions containing 1 gL PS80 (0.1 % w/v) in 10 mM acetate buffer (pH 6) were exposed to various amounts of either Fe(II) or Fe(III), hydrogen peroxide (HO), and various enzymes or antioxidants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!