The BTB-Kelch protein KLHL3 is a Cullin3-dependent E3 ligase that mediates the ubiquitin-dependent degradation of kinases WNK1-4 to control blood pressure and cell volume. A crystal structure of KLHL3 has defined its binding to an acidic degron motif containing a PXXP sequence that is strictly conserved in WNK1, WNK2 and WNK4. Mutations in the second proline abrograte the interaction causing the hypertension syndrome pseudohypoaldosteronism type II. WNK3 shows a diverged degron motif containing four amino acid substitutions that remove the PXXP motif raising questions as to the mechanism of its binding. To understand this atypical interaction, we determined the crystal structure of the KLHL3 Kelch domain in complex with a WNK3 peptide. The electron density enabled the complete 11-mer WNK-family degron motif to be traced for the first time revealing several conserved features not captured in previous work, including additional salt bridge and hydrogen bond interactions. Overall, the WNK3 peptide adopted a conserved binding pose except for a subtle shift to accommodate bulkier amino acid substitutions at the binding interface. At the centre, the second proline was substituted by WNK3 Thr541, providing a unique phosphorylatable residue among the WNK-family degrons. Fluorescence polarisation and structural modelling experiments revealed that its phosphorylation would abrogate the KLHL3 interaction similarly to hypertension-causing mutations. Together, these data reveal how the KLHL3 Kelch domain can accommodate the binding of multiple WNK isoforms and highlight a potential regulatory mechanism for the recruitment of WNK3.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9022995 | PMC |
http://dx.doi.org/10.1042/BCJ20220019 | DOI Listing |
Commun Biol
January 2025
Obsidian Therapeutics, Cambridge, MA, USA.
Adoptive cell therapies (ACT) have shown reduced efficacy against solid tumor malignancies compared to hematologic malignancies, partly due to the immunosuppressive nature of the tumor microenvironment (TME). ACT efficacy may be enhanced with pleiotropic cytokines that remodel the TME; however, their expression needs to be tightly controlled to avoid systemic toxicities. Here we show T cells can be armored with membrane-bound cytokines with surface expression regulated using drug-responsive domains (DRDs) developed from the 260-amino acid protein human carbonic anhydrase 2 (CA2).
View Article and Find Full Text PDFTrends Biochem Sci
December 2024
Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California San Francisco (UCSF), San Francisco, CA 94158, USA. Electronic address:
The molecular chaperones HSP70 and HSP90 play key roles in proteostasis by acting as adapters; they bind to a 'client' protein, often with the assistance of cochaperones, and then recruit additional cochaperones that promote specific fates (e.g., folding or degradation).
View Article and Find Full Text PDFBiochem J
December 2024
Scion, Titokorangi Drive, Private Bag 3020, Rotorua 3046, New Zealand.
Regulation of protein longevity via the ubiquitin (Ub) - proteasome pathway is fundamental to eukaryotic biology. Ubiquitin E3 ligases (E3s) interact with substrate proteins and provide specificity to the pathway. A small subset of E3s bind to specific exposed N-termini (N-degrons) and promote the ubiquitination of the bound protein.
View Article and Find Full Text PDFBiochem Pharmacol
January 2025
Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India. Electronic address:
Regulated protein degradation plays a crucial role in maintaining proteostasis along with protein refolding and compartmentalisation which collectively control biological functions. The N-end rule pathway is a major ubiquitin-dependent protein degradation system. The short-lived protein substrates containing destabilizing amino acid residues (N-degrons) are recognized by E3 ubiquitin ligases containing UBR box domains (N-recognin) for degradation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!