The design of molecular-based catalysts for oxygen-evolution reaction (OER) requires more investigations for the true catalyst to be found. First-row transition metal complexes are extensively investigated for OER, but the role of these metal complexes as a true catalyst is doubtful. Some doubts have been expressed about the role of first-row transition metal complexes for OER at high overpotentials (η > 450). Generally, the detection of the true catalyst has so far been focused on high overpotentials (η > 450) because at low overpotentials (η < 450), many methods are not sensitive enough to detect small amounts of heterogeneous catalysts on the electrode surface during the first seconds of the reaction. Ni(II) phthalocyanine-tetra sulfonate tetrasodium () is in moderate conditions (at 20-50 °C and pH 5-13) in the absence of electrochemical driving forces, which could make it noteworthy for OER. Herein, the results of OER in the presence of at low overpotentials under alkaline conditions are presented. In addition, in the presence of Ni complexes, using an Fe ion is introduced as a new method for detecting Ni (hydr)oxide under OER. Our experiments indicate that in the presence of a homogeneous OER (pre)catalyst, a deep investigation is necessary to rule out the heterogeneous catalysts formed. Our approach is a roadmap in the field of catalysis to understand the OER mechanism in the presence of a molecular Ni-based catalyst design. Our results shown in this study are likely to open up new perspectives and discussion on many molecular catalysts in a considerable part of the chemistry community.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.2c00111 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!