The late-stage functionalization of indole- and tryptophan-containing compounds with reactive moieties facilitates downstream diversification and leads to changes in their biological properties. Here, the synthesis of two hydroxy-bearing allyl pyrophosphates is described. A chemoenzymatic method is demonstrated which uses a promiscuous indole prenyltransferase enzyme to install a dual reactive hydroxy-bearing allyl moiety directly on the indole ring of tryptophan-containing peptides. This is the first report of late-stage indole modifications with this reactive group.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9314954PMC
http://dx.doi.org/10.1002/chem.202104614DOI Listing

Publication Analysis

Top Keywords

hydroxy-bearing allyl
12
allyl moiety
8
indole ring
8
ring tryptophan-containing
8
tryptophan-containing peptides
8
late-stage chemoenzymatic
4
chemoenzymatic installation
4
installation hydroxy-bearing
4
indole
4
moiety indole
4

Similar Publications

The late-stage functionalization of indole- and tryptophan-containing compounds with reactive moieties facilitates downstream diversification and leads to changes in their biological properties. Here, the synthesis of two hydroxy-bearing allyl pyrophosphates is described. A chemoenzymatic method is demonstrated which uses a promiscuous indole prenyltransferase enzyme to install a dual reactive hydroxy-bearing allyl moiety directly on the indole ring of tryptophan-containing peptides.

View Article and Find Full Text PDF

A copper-catalyzed asymmetric allylic substitution of γ,γ-disubstituted allyl phosphates with arylboronates has been developed for the construction of quaternary stereocenters. High regio- and enantioselectivities have been achieved by employing a hydroxy-bearing chiral N-heterocyclic carbene ligand, and both E and Z substrates provide the same enantiomer as the major product. The mechanistic aspect of this catalysis has also been investigated to find that a 1:1 copper/ligand complex is most likely responsible for the present asymmetric catalysis, and the reaction proceeds with almost perfect 1,3-anti stereochemistry with respect to the allylic electrophile.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!