The scarcity of clean and safe water is one of the most perilous glitches faced by the world. The pure drinking water resources across the world are depleting progressively due to rapid industrialization and growth in population. The conceivable solution for this problem is converting the available seawater into pure drinking water through several techniques of desalination. In the stream of desalination, many prodigious endeavours are in evolution to increase the reliability of the process by cutting down the principal and maintenance costs. Among several desalination approaches, low-temperature thermal desalination (LTTD) is an intriguing and advancing trend in the desalination process by using low temperatures and pressures in a range similar to ambient temperatures and vacuum pressures. The LTTD technique is operated by taking the energy input from waste heat, thermoclines and renewable energy sources. However, the operating temperatures of the LTTD system are less than 50 °C. The development of this particular LTTD process driven by renewable energy sources has gone through various stages, based on the water-energy demands, environmental concerns and technological progressions. In this article, the historical developments of the LTTD process using several renewable and non-renewable energy sources have been reviewed. Finally, some future recommendations for further developments in this approach are discussed. This article paves the path for the researchers working in desalination to choose an appropriate LTTD approach that is more viable and sustainable than the conventional desalination systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-022-19147-5 | DOI Listing |
Bio Protoc
January 2025
Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Riken, 2-1 Hirosawa, Wako Saitama, Japan.
Cytosolic peptide:-glycanase (PNGase/NGLY1 in mammals), an amidase classified under EC:3.5.1.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Department of Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia University of Belgrade Belgrade Serbia.
(L.) Roxb. and (L.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Mechanical Engineering, Mohammadia School of Engineering, Avenue Ibn Sina B.P 765, Agdal, Rabat, 10090, Morocco.
Enhanced penstock structural models significantly advance hydropower engineering, yet their increasing complexity introduces challenges. As model interactions intensify, predictability and comprehensibility decrease, complicating the evaluation of model accuracy and alignment with operational performance metrics and safety standards. This issue is particularly pronounced in dynamic modeling, where knowledge gaps hinder straightforward validation via observational data.
View Article and Find Full Text PDFLangmuir
January 2025
Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India.
Electrochemical CO reduction is crucial in combatting climate change and advancing sustainable energy practices by converting CO into valuable chemicals and fuels, thereby reducing atmospheric CO levels and enabling the storage and utilization of renewable energy from intermittent sources like solar and wind. The selection of electrode materials and platform design plays a critical role in enhancing reaction efficiency and product selectivity during CO reduction. Various metals, both in their solid forms and coated over substrates, have been used in electrochemical CORR.
View Article and Find Full Text PDFCNS Spectr
January 2025
Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
Incretin-based treatments, such as glucagon-like peptide-1 receptor (GLP-1R) agonists (eg liraglutide and semaglutide), have rapidly transformed obesity treatment. The well-documented weight loss effect from these agents is considered to be primarily a result of their actions on food intake, but frequent anecdotal reports from varied sources have suggested that they might also broadly affect consummatory behavior, including alcohol and drugs of abuse, suggesting a potential modulatory effect on reward behavior. Herein, we critically review the extant literature on the behavioral effects of GLP-1R agonists in humans, including their impact on feeding behavior, alcohol/drug intake, and overall reward response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!