Discovered Key CpG Sites by Analyzing DNA Methylation and Gene Expression in Breast Cancer Samples.

Front Cell Dev Biol

Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, China.

Published: February 2022

Breast cancer is the most common cancer in the world, and DNA methylation plays a key role in the occurrence and development of breast cancer. However, the effect of DNA methylation in different gene functional regions on gene expression and the effect of gene expression on breast cancer is not completely clear. In our study, we computed and analyzed DNA methylation, gene expression, and clinical data in the TCGA database. Firstly, we calculated the distribution of abnormal DNA methylated probes in 12 regions, found the abnormal DNA methylated probes in down-regulated genes were highly enriched, and the number of hypermethylated probes in the promoter region was 6.5 times than that of hypomethylated probes. Secondly, the correlation coefficients between abnormal DNA methylated values in each functional region of differentially expressed genes and gene expression values were calculated. Then, co-expression analysis of differentially expressed genes was performed, 34 hub genes in cancer-related pathways were obtained, of which 11 genes were regulated by abnormal DNA methylation. Finally, a multivariate Cox regression analysis was performed on 27 probes of 11 genes. Three DNA methylation probes (cg13569051 and cg14399183 of , and cg25274503 of ) related to survival were used to construct a prognostic model, which has a good prognostic ability. Furthermore, we found that the cg25274503 hypermethylation in the promoter region inhibited the expression of the , and the hypermethylation of cg13569051 and cg14399183 in the 5'UTR region inhibited the expression of . These results may provide possible molecular targets for breast cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8844453PMC
http://dx.doi.org/10.3389/fcell.2022.815843DOI Listing

Publication Analysis

Top Keywords

dna methylation
24
gene expression
20
breast cancer
20
abnormal dna
16
methylation gene
12
dna methylated
12
dna
9
expression breast
8
cancer dna
8
methylated probes
8

Similar Publications

Epigenetic regulation in hematopoietic stem cells (HSCs) research has emerged as a transformative molecular approach that enhances understanding of hematopoiesis and hematological disorders. This chapter investigates the intricate epigenetic mechanisms that control HSCs function, including deoxyribonucleic acid (DNA) methylation, histone modifications, and chromatin remodeling. It also explores the role of non-coding ribonucleic acid (RNAs) as epigenetic regulators, highlighting how changes in gene expression can occur without alterations to the DNA sequence.

View Article and Find Full Text PDF

Long-term effects of combined exposures to simulated microgravity and galactic cosmic radiation on the mouse lung: sex-specific epigenetic reprogramming.

Radiat Environ Biophys

January 2025

Department of Environmental Health Sciences, #820-11, Slot, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, 4301 W. Markham Str, Little Rock, AR, 72205, USA.

Most studies on the effects of galactic cosmic rays (GCR) have relied on terrestrial irradiation using spatially homogeneous dose distributions of mono-energetic beams comprised of one ion species. Here, we exposed mice to novel beams that more closely mimic GCR, namely, comprising poly-energetic ions of multiple species. Six-month-old male and female C57BL/6J mice were exposed to 0 Gy, 0.

View Article and Find Full Text PDF

Current intensive treatment of pediatric T-cell acute lymphoblastic leukemia (T-ALL) has substantial side-effects, highlighting a need for novel biomarkers to improve risk stratification. Canonical biomarkers such as genetics and immunophenotype are largely not used in pediatric T-ALL stratification. This study aimed to validate the prognostic relevance of DNA methylation CpG island methylator phenotype (CIMP) risk stratification in two pediatric T-ALL patient cohorts: the Nordic NOPHO ALL2008 T-ALL study cohort (n=192) and the Dutch DCOG ALL-10/ALL-11 validation cohorts (n=156).

View Article and Find Full Text PDF

Cancer's epigenetic landscape, a labyrinthine tapestry of molecular modifications, has long captivated researchers with its profound influence on gene expression and cellular fate. This review discusses the intricate mechanisms underlying cancer epigenetics, unraveling the complex interplay between DNA methylation, histone modifications, chromatin remodeling, and non-coding RNAs. We navigate through the tumultuous seas of epigenetic dysregulation, exploring how these processes conspire to silence tumor suppressors and unleash oncogenic potential.

View Article and Find Full Text PDF

Genetics and Epigenetics of Human Pubertal Timing: The Contribution of Genes Associated With Central Precocious Puberty.

J Endocr Soc

January 2025

Cellular and Molecular Endocrinology Laboratory LIM/25, Division of Endocrinology and Metabolism, Clinicas Hospital, School of Medicine, University of Sao Paulo, 01246-903 Sao Paulo, Brazil.

Human puberty is a dynamic biological process determined by the increase in the pulsatile secretion of GnRH triggered by distinct factors not fully understood. Current knowledge reveals fine tuning between an increase in stimulatory factors and a decrease in inhibitory factors, where genetic and epigenetic factors have been indicated as key players in the regulation of puberty onset by distinct lines of evidence. Central precocious puberty (CPP) results from the premature reactivation of pulsatile secretion of GnRH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!