Dual Fluorescence in Glutathione-Derived Carbon Dots Revisited.

J Phys Chem C Nanomater Interfaces

Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands.

Published: February 2022

Dual-fluorescence carbon dots have great potential as nanosensors in life and materials sciences. Such carbon dots can be obtained via a solvothermal synthesis route with glutathione and formamide. In this work, we show that the dual-fluorescence emission of the synthesis products does not originate from a single carbon dot emitter, but rather from a mixture of physically separate compounds. We characterized the synthesis products with UV-vis, Raman, infrared, and fluorescence spectroscopy, and identified blue-emissive carbon dots and red-emissive porphyrin. We demonstrate an easy way to separate the two compounds without the need for time-consuming dialysis. Understanding the nature of the system, we can now steer the synthesis toward the desired product, which paves the way for a cheap and environmentally friendly synthesis route toward carbon dots, water-soluble porphyrin, and mixed systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8842246PMC
http://dx.doi.org/10.1021/acs.jpcc.1c10478DOI Listing

Publication Analysis

Top Keywords

carbon dots
20
synthesis route
8
synthesis products
8
separate compounds
8
carbon
6
dots
5
synthesis
5
dual fluorescence
4
fluorescence glutathione-derived
4
glutathione-derived carbon
4

Similar Publications

Carbon dots (CDs) are promising candidates as oxygen photosensitizers, in cancer therapeutic applications due to their high quantum yield, superior chemical and photostability, low cytotoxicity and ease of chemical functionalization/tuning. Nitrogen doping can further improve oxygen photosensitization performance. Besides photodynamic therapy, however, the possibility to finely and remotely regulate the intracellular redox balance by using physical stimuli has been attracting more and more interest not only for nanotheranostic application, but also as a novel, fully biocompatible therapeutic tool.

View Article and Find Full Text PDF

Sub-cellular organelle anomalies are frequently observed in diseases such as cancer. Early and precise diagnosis of these alterations can be crucial for patient outcomes. However, current diagnostic tools using conventional organic dyes or metal quantum dots face limitations, including poor biocompatibility, stringent storage conditions, limited solubility in aqueous media, and slow staining speeds.

View Article and Find Full Text PDF

Developing single-particle nanocomposite with aqueous-phase orthogonal multicolor phosphorescence or multimodal luminescence holds great significance for optical coding, anti-counterfeiting encryption, bioimaging, and biosensing. However, it faces challenges such as a limited range of emission wavelengths and difficulties in controlling the synthesis process. In this work, a conjugate structure manipulation integrated luminophor confinement strategy is proposed to prepare carbon dots@upconversion nanoparticles (CDs@UCNPs) featuring aqueous-phase orthogonal multicolor room-temperature phosphorescence-upconversion luminescence (RTP-UCL) through wet-chemical synthetic methods.

View Article and Find Full Text PDF

Carbon dot embedded hybrid microgel from synthesis to sensing: Experimental and theoretical approach.

Anal Chim Acta

February 2025

Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India; Department of Applied Chemistry, Maulana Abul Kalam Azad University of Technology, Simhat, Haringhata, West Bengal, 741249, India. Electronic address:

Background: The intellectual progress in fabricating artificial probes for selective appraisal of biologically admissible amino acids has displayed exponential growth in recent era.The neoteric era in material science has witnessed the significant application of carbon quantum dots (CQDs). However, the hybrid microgel of CQDs was less explored.

View Article and Find Full Text PDF

A label-free electrochemical biosensor based on graphene quantum dots-nanoporous gold nanocomposite for highly sensitive detection of glioma cell.

Anal Chim Acta

February 2025

School of Life Sciences, The Second Affiliated Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, PR China. Electronic address:

Background: Glioma accounts for 80 % of all malignant primary brain tumors with a high mortality rate. Histopathological examination is the current diagnostic methods for glioma, but its invasive surgical interventions can cause cerebral edema or impair neural functioning. Liquid biopsy proves to be an efficient method for glioma detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!