Effects of Chronic Intermittent Hypoxia and Chronic Sleep Fragmentation on Gut Microbiome, Serum Metabolome, Liver and Adipose Tissue Morphology.

Front Endocrinol (Lausanne)

Department of Otolaryngology-Head and Neck Surgery and Shanghai Key Laboratory of Sleep Disordered Breathing and Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.

Published: March 2022

Chronic intermittent hypoxia (CIH) and chronic sleep fragmentation (CSF) are two cardinal pathological features of obstructive sleep apnea (OSA). Dietary obesity is a crucial risk intermediator for OSA and metabolic disorders. Gut microbiota affect hepatic and adipose tissue morphology under conditions of CIH or CSF through downstream metabolites. However, the exact relationship is unclear. Herein, chow and high-fat diet (HFD)-fed mice were subjected to CIH or CSF for 10 weeks each and compared to normoxia (NM) or normal sleep (NS) controls. 16S rRNA amplicon sequencing, untargeted liquid chromatography-tandem mass spectrometry, and histological assessment of liver and adipose tissues were used to investigate the correlations between the microbiome, metabolome, and lipid metabolism under CIH or CSF condition. Our results demonstrated that CIH and CSF regulate the abundance of intestinal microbes (such as , spp., spp., spp.) and functional metabolites, such as tryptophan, free fatty acids, branched amino acids, and bile acids, which influence adipose tissue and hepatic lipid metabolism, and the level of lipid deposition in tissues and peripheral blood. In conclusion, CIH and CSF adversely affect fecal microbiota composition and function, and host metabolism; these findings provide new insight into the independent and synergistic effects of CIH, CSF, and HFD on lipid disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8846366PMC
http://dx.doi.org/10.3389/fendo.2022.820939DOI Listing

Publication Analysis

Top Keywords

cih csf
24
adipose tissue
12
chronic intermittent
8
intermittent hypoxia
8
chronic sleep
8
sleep fragmentation
8
liver adipose
8
tissue morphology
8
lipid metabolism
8
spp spp
8

Similar Publications

Effects of Chronic Intermittent Hypoxia and Chronic Sleep Fragmentation on Gut Microbiome, Serum Metabolome, Liver and Adipose Tissue Morphology.

Front Endocrinol (Lausanne)

March 2022

Department of Otolaryngology-Head and Neck Surgery and Shanghai Key Laboratory of Sleep Disordered Breathing and Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.

Chronic intermittent hypoxia (CIH) and chronic sleep fragmentation (CSF) are two cardinal pathological features of obstructive sleep apnea (OSA). Dietary obesity is a crucial risk intermediator for OSA and metabolic disorders. Gut microbiota affect hepatic and adipose tissue morphology under conditions of CIH or CSF through downstream metabolites.

View Article and Find Full Text PDF

Impact of cytokine in type 1 narcolepsy: Role of pandemic H1N1 vaccination ?

J Autoimmun

June 2015

National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome (CNR narcolepsie-hypersomnie), France; Inserm U1061, Montpellier, France; Université Montpellier 1, Montpellier, France; Sleep Disorders Center, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, France. Electronic address:

Recent advances in the identification of susceptibility genes and environmental exposures (pandemic influenza 2009 vaccination) provide strong support that narcolepsy type 1 is an immune-mediated disease. Considering the limited knowledge regarding the immune mechanisms involved in narcolepsy whether related to flu vaccination or not and the recent progresses in cytokine measurement technology, we assessed 30 cytokines, chemokines and growth factors using the Luminex technology in either peripheral (serum) or central (CSF) compartments in a large population of 90 children and adult patients with narcolepsy type 1 in comparison to 58 non-hypocretin deficient hypersomniacs and 41 healthy controls. Furthermore, we compared their levels in patients with narcolepsy whether exposed to pandemic flu vaccine or not, and analyzed the effect of age, duration of disease and symptom severity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!