Background: Pioglitazone's effect on chronic obstructive pulmonary disease (COPD) has rarely been studied.
Purpose: This retrospective observational study investigated whether the use of pioglitazone would affect the risk of COPD in patients with type 2 diabetes mellitus.
Patients And Methods: The Taiwan's National Health Insurance database was used to enroll 9487 matched pairs of ever users and never users of pioglitazone based on propensity score from a cohort of 350,536 patients. The enrolled patients had a new diagnosis of type 2 diabetes mellitus between 1999 and 2008 and were not having a diagnosis of COPD before January 1, 2009. They were then followed up for COPD, starting from January 1, 2009 until December 31, 2011. Diagnosis of COPD was based on the codes of 491 for chronic bronchitis and 492 for emphysema based on the International Classification of Diseases, Ninth Revision, Clinical Modification. Cox regression was used to estimate hazard ratios. The interactions between pioglitazone and COPD risk factors including pneumonia, pulmonary tuberculosis and tobacco abuse were also investigated.
Results: In 9487 never users and 9487 ever users of pioglitazone, the case numbers of incident COPD were 359 and 295, respectively. The respective incidence rates of COPD were 1484.73 and 1167.61 per 100,000 person-years. The overall hazard ratio (95% confidence interval) for COPD that compared ever to never users was 0.778 (0.667-0.908). The hazard ratios for the tertiles of cumulative duration of pioglitazone therapy (cutoffs: <11.0, 11.0-19.6 and >19.6 months) to never users were 0.904 (0.729-1.121), 0.727 (0.578-0.914) and 0.715 (0.570-0.896), respectively. No interactions between pioglitazone and COPD risk factors including pneumonia, pulmonary tuberculosis and tobacco abuse were noted.
Conclusion: Pioglitazone use is associated with a significantly lower risk of COPD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8843794 | PMC |
http://dx.doi.org/10.2147/COPD.S345796 | DOI Listing |
Chem Biodivers
January 2025
Gannan Medical University, Depatment of Medicinal Chemistry, Gannan Medical University, 341000, Ganzhou, CHINA.
Extracting natural active ingredients from plants is an effective way to develop and screen modern drugs. Psoralea corylifolia is a leguminous plant whose seeds have long been used as a Traditional Chinese Medicine to treat psoriasis, rheumatism, dermatitis, and other diseases. To date, several main compounds, including coumarins, flavonoids, monoterpene phenols, and benzofurans, have been identified from the seeds of Psoralea corylifolia.
View Article and Find Full Text PDFDiabetes Care
January 2025
Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA.
Objective: We investigated associations between per- and polyfluoroalkyl substances (PFAS) and changes in diabetes indicators from pregnancy to 12 years after delivery among women with a history of gestational diabetes mellitus (GDM).
Research Design And Methods: Eighty Hispanic women with GDM history were followed from the third trimester of pregnancy to 12 years after delivery. Oral and intravenous glucose tolerance tests were conducted during follow-up.
Diabetes
January 2025
School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China.
Increasing evidence suggests that individuals infected with Coronavirus disease 2019 (COVID-19) are at a higher risk of developing type 2 diabetes (T2D) compared to those who are not infected. However, the mechanisms underlying this relationship remain poorly understood. In this study, we aimed to systematically evaluate the mediating roles of 3,283 plasma proteins in the link between COVID-19 susceptibility and T2D by conducting proteome-wide Mendelian randomization (MR) analyses.
View Article and Find Full Text PDFDrugs
January 2025
Division of Endocrinology, Department of Pediatrics, College of Medicine, University of Florida, 1699 SW 16th Ave, Building A, Gainesville, FL, 32608, USA.
Type 1 diabetes mellitus (T1DM) is characterized by the progressive, autoimmune-mediated destruction of β cells. As such, restoring immunoregulation early in the disease course is sought to retain endogenous insulin production. Nevertheless, in the more than 100 years since the discovery of insulin, treatment of T1DM has focused primarily on hormone replacement and glucose monitoring.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Pharmaceutical Sciences & Technology, BIT Mesra, Ranchi, 835215, India.
Background: Nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM) are associated with a multifactorial complicated aetiology that is often coexisting and has a strong and distinct connection with cardiovascular diseases (CVDs). In order to accomplish effective and appropriate therapeutic strategies, a deeper understanding of the bidirectional interaction between NAFLD patients, NAFLD patients with T2DM, and NAFLD patients with CVDs is required to control the concomitant rise in prevalence of these conditions worldwide. This article also aims to shed light on the epidemiology and mechanisms behind the relationship between T2DM, NAFLD and the related cardiovascular consequences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!