The seamless integration of III-V nanostructures on silicon is a long-standing goal and an important step towards integrated optical links. In the present work, we demonstrate scaled and waveguide coupled III-V photodiodes monolithically integrated on Si, implemented as InP/InGaAs/InP p-i-n heterostructures. The waveguide coupled devices show a dark current down to 0.048 A/cm at -1 V and a responsivity up to 0.2 A/W at -2 V. Using grating couplers centered around 1320 nm, we demonstrate high-speed detection with a cutoff frequency f exceeding 70 GHz and data reception at 50 GBd with OOK and 4PAM. When operated in forward bias as a light emitting diode, the devices emit light centered at 1550 nm. Furthermore, we also investigate the self-heating of the devices using scanning thermal microscopy and find a temperature increase of only ~15 K during the device operation as emitter, in accordance with thermal simulation results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8854727PMC
http://dx.doi.org/10.1038/s41467-022-28502-6DOI Listing

Publication Analysis

Top Keywords

waveguide coupled
12
coupled iii-v
8
iii-v photodiodes
8
photodiodes monolithically
8
monolithically integrated
8
integrated seamless
4
seamless integration
4
integration iii-v
4
iii-v nanostructures
4
nanostructures silicon
4

Similar Publications

Optical sensors based on plasmonic nano-structures: A review.

Heliyon

December 2024

Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran.

Optical sensors are among the most significant optical devices that have found extensive applications for THz sensing. Surface plasmon-based sensors have attracted increasing attention more than other kinds of optical sensors such as photonic crystal, optical fiber, and graphene sensors, owing to their compact footprint, fast reaction, and high sensitivity value. Therefore, this work reviews plasmonic sensor structures divided into three general categories.

View Article and Find Full Text PDF

We demonstrate the heterogeneous integration of GaInAsSb-GaSb photodiodes on 220 nm SOI photonic integrated circuits (PICs) using the micro-transfer-printing (μTP) technology, for operation in the short-wave infrared (SWIR) wavelength region. Utilizing an evanescent coupling scheme between a silicon waveguide and a III-V structure, the device exhibits a room temperature responsivity of 1.23 and 1.

View Article and Find Full Text PDF

Tunable Generation of Spatial Entanglement in Nonlinear Waveguide Arrays.

Phys Rev Lett

December 2024

Université Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, 75013 Paris, France.

Harnessing high-dimensional entangled states of light presents a frontier for advancing quantum information technologies, from fundamental tests of quantum mechanics to enhanced computation and communication protocols. In this context, the spatial degree of freedom stands out as particularly suited for on-chip integration. But while traditional demonstrations produce and manipulate path-entangled states sequentially with discrete optical elements, continuously coupled nonlinear waveguide systems offer a promising alternative where photons can be generated and interfere along the entire propagation length, unveiling novel capabilities within a reduced footprint.

View Article and Find Full Text PDF

Coexistence of the Radial-Guided Mode and WGM in Azimuthal-Grating-Integrated Microring Lasers.

ACS Photonics

December 2024

Graduate School and Faculty of Information Science and Electrical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395, Japan.

Whispering-gallery mode (WGM) resonators, renowned for their high Q-factors and narrow line widths, are widely utilized in integrated photonics. Integrating diffraction gratings onto WGM cavities has gained significant attention because these gratings function as azimuthal refractive index modulators, enabling single-mode WGM emissions and supporting beams with orbital angular momentum (OAM). The introduction of curved grating structures facilitates guided mode resonances by coupling high-order diffracted waves with leaking modes from the waveguide.

View Article and Find Full Text PDF

Coupling-Controlled Photonic Topological Ring Array.

ACS Photonics

December 2024

School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China.

Photonic topological insulators with boundary states present a robust solution to mitigate structure imperfections. By alteration of the virtual boundary between trivial and topological insulators, it is possible to bypass such defects. Coupled resonator optical waveguides (CROWs) have demonstrated their utility in realizing photonic topological insulators, as they exhibit distinct topological phases and band structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!