The Amyloid Precursor Protein Plays Differential Roles in the UVA Resistance and Proliferation of Human Retinal Pigment Epithelial Cells.

Protein Pept Lett

Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom.

Published: June 2022

Background: Age-related macular degeneration (AMD) can be characterised by degeneration of retinal pigment epithelial (RPE) cells and the accumulation, in retinal drusen deposits, of amyloid beta-peptides proteolytically derived, by secretases, from the amyloid precursor protein (APP). Ultraviolet (UV) light exposure is a risk factor for the development of AMD.

Objectives: In the current study, we investigated whether APP and/or its proteolysis are linked to the UVA resistance or proliferation of ARPE-19 human RPE cells.

Methods: Cell viability was determined, following UVA exposure, with prior small interfering RNA-mediated APP depletion or secretase inhibitor treatments. APP levels/proteolysis were analysed by immunoblotting. Cells were also grown in the presence/absence of secretase inhibitors to assess their effects on longer-term culture growth. Finally, the effects of APP proteolytic fragments on ARPE-19 cell proliferation were monitored following co-culture with human embryonic kidney cells stably over-expressing these fragments.

Results: Endogenous APP was depleted following UVA irradiation and β-secretase, but not α- secretase, the processing of the protein was reduced. Experimental APP depletion or γ-secretase (but not α- or β-secretase) inhibition ablated the detrimental effect of UVA on cell viability. In contrast, α-secretase, and possibly γ-secretase but not β-secretase activity, appeared to promote the longerterm proliferation of ARPE-19 cells in the absence of UVA irradiation.

Conclusion: There are clear but differential links between APP expression/proteolysis and the proliferation and UVA resistance of ARPE-19 cells indicating that the protein should be investigated further in relation to the identification of possible drug targets for the treatment of AMD.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0929866529666220217124152DOI Listing

Publication Analysis

Top Keywords

uva resistance
12
amyloid precursor
8
precursor protein
8
resistance proliferation
8
retinal pigment
8
pigment epithelial
8
app
8
proliferation arpe-19
8
cell viability
8
app depletion
8

Similar Publications

Antibiotic resistance is a growing global healthcare challenge, treatment of bacterial infections with fluoroquinolones being no exception. These antibiotics can induce genetic instability through several mechanisms, one of the most significant being the activation of the SOS response. During exposure to sublethal concentration, this stress response increases mutation rates, accelerating resistance evolution.

View Article and Find Full Text PDF

PEGylated ATP-Independent Luciferins for Noninvasive High-Sensitivity High-Speed Bioluminescence Imaging.

ACS Chem Biol

December 2024

Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States.

Bioluminescence imaging (BLI) is a powerful, noninvasive imaging method for animal studies. NanoLuc luciferase and its derivatives are attractive bioluminescent reporters recognized for their efficient photon production and ATP independence. However, utilizing them for animal imaging poses notable challenges.

View Article and Find Full Text PDF

Background: Almost half of all women will have at least one symptomatic urinary tract infection (UTI) in their lifetime. Although usually self-remitting, 74% of women contacting a health professional are prescribed an antibiotic, and in rare instances, they may progress to more severe infections. Therefore, the standard of care for the treatment of symptomatic uncomplicated UTIs is oral antibiotic therapy, which aims to achieve symptom resolution and prevent the development of complications such as pyelonephritis.

View Article and Find Full Text PDF

Corneal cross-linking.

Prog Retin Eye Res

December 2024

ELZA Institute, Webereistrasse 2, CH-8953, Dietikon, Switzerland; Laboratory for Ocular Cell Biology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland; Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1206, Geneva, Switzerland. Electronic address:

First introduced over 20 years ago as a treatment for progressive keratoconus, the original "Dresden" corneal cross-linking (CXL) protocol involved riboflavin saturation of the stroma, followed by 30 min of 3 mW/cm-intensity ultraviolet-A (UV-A) irradiation. This procedure generates reactive oxygen species (ROS) that cross-link stromal molecules, thereby stiffening the cornea and counteracting the ectasia-induced weakening. Due to their large size, riboflavin molecules cannot readily pass through the corneal epithelial cell tight junctions; thus, epithelial debridement was performed.

View Article and Find Full Text PDF

Crosslinking agents, such as psoralen and UVA radiation, can be effectively used as antimicrobials and for treating several dysplastic conditions in humans, including some cancers. Yet, both cancer cells and bacteria can become resistant to these compounds, making it important to understand how resistance develops. Recently, several mutants were isolated that developed high-levels of resistance to these compounds through upregulation of components of the AcrAB-TolC-efflux pump.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!