Sodium butyrate reduces ammonia emissions through glutamate metabolic pathways in cecal microorganisms of laying hens.

Ecotoxicol Environ Saf

College of Animal Science, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Published: March 2022

Ammonia emission is an important problem that needs to be solved in laying hen industries. Sodium butyrate (SB) is considered to have potential for reducing ammonia production because of its ability to improve nitrogen metabolism. In this in vitro fermentation study, we presented a correlation analysis of the metatranscriptome and metaproteome of lay hen cecal microorganisms, in order to identify important proteins and pathways involved in ammonia production reduction due to sodium butyrate supplementation. The results showed that sodium butyrate supplement decreased the production of ammonia by 26.22% as compared with the non-sodium butyrate supplementation (CK) group. The SB group exhibited a lower concentration of ammonium nitrogen (NH-N) and a decreased pH. Sodium butyrate promoted the uric acid concentration and lowered the uricase activity in the fermentation broth of laying hens cecal content. Notably, the 'alanine, aspartate and glutamate metabolism' category was more abundant in the SB group. The addition of sodium butyrate increased the expression of glutamate dehydrogenase (GDH) gene in cecal microbiota (e.g., Ruminococcus sp. and Bacteroides sp.) in vitro. The metaproteome analysis results showed that the expression of GDH with NADPH as coenzyme (NADPH-GDH) was up-regulated in cecal microbiota by sodium butyrate supplement. Our results indicate that sodium butyrate can affect glutamate metabolism through regulating the expression of glutamate dehydrogenase in cecal microorganisms, thereby reducing ammonia production. This study reveals that glutamate dehydrogenase-mediated glutamate metabolism play a key role in ammonia emission reduction in laying hen and provide theoretical basis for further developing ammonia production reduction approach.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2022.113299DOI Listing

Publication Analysis

Top Keywords

sodium butyrate
32
ammonia production
16
cecal microorganisms
12
sodium
8
ammonia
8
laying hens
8
ammonia emission
8
laying hen
8
butyrate
8
reducing ammonia
8

Similar Publications

Despite recent advancements in organic photovoltaics (OPVs), further improvements in power conversion efficiency (PCE) and device lifetime are necessary for commercial viability. Strategies such as optimizing the molecular orientation and minimizing the charge traps of organic films are particularly effective in enhancing photovoltaic performance. In this study, we successfully utilized vacuum electrospray deposition (VESD) to achieve favourable face-on stacking geometries while preserving the integrity of the interfaces in poly(3-hexylthiophene-2,5-diyl) (P3HT): [6,6]-phenyl-C-butyric acid methyl ester (PCBM) bulk heterojunction (BHJ) films.

View Article and Find Full Text PDF

Background: Samh (Mesembryanthemum forsskalii, M. cryptanthum) belongs to Aizoaceae family and is found in northern Saudi Arabia, primarily in desert or dry shrubland habitats. M.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Anesthesia, Critical Care & Pain Medicine, Boston, MA, USA.

Background: Spouses of Alzheimer's disease (AD) patients are at a higher risk of developing incidental dementia. However, the causes and underlying mechanism of this clinical observation remain largely unknown. One possible explanation is linked to microbiota dysbiosis, a condition that has been associated with AD.

View Article and Find Full Text PDF

Background: Our research group is currently exploring the potential of Butyric acid (NaB), a Short Chain Fatty Acid (SCFA), as a novel therapeutic agent for Alzheimer's disease (AD).

Methods: In our investigation using the 5xFAD mouse model of AD, we observed that NaB had significant effects on Aβ levels, as well as on associative learning and cognitive functioning. Notably, we recorded a 40% reduction in brain Aβ and a 25% increase in fear response during both cued and contextual testing.

View Article and Find Full Text PDF

Chinese Hamster Ovary (CHO) cells are essential in biopharmaceutical manufacturing. Scientists use CRISPR to enhance productivity. mRNAs contain UTRs that regulate gene expression, affecting protein abundance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!