Myeloid differential protein-2 inhibition improves diabetic cardiomyopathy via p38MAPK inhibition and AMPK pathway activation.

Biochim Biophys Acta Mol Basis Dis

Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China. Electronic address:

Published: May 2022

Myeloid differential protein-2 (MD2) has been shown to play a critical role in the progression of diabetic cardiomyopathy (DCM). This study aims to explore the non-inflammatory mechanisms mediated by MD2 in DCM and to test the therapeutic effects of MD2 inhibitor C30 on DCM. Streptozotocin (STZ) was used to construct DCM model in wild-type and MD2 knockout mice. The collected heart samples were subjected to RNA-sequencing assay. Gene set enrichment analysis of the RNA-seq data indicated that MD2 knockout was associated with energy metabolism pathways in diabetic mouse heart. Further data showed that AMPK pathway was impaired under high glucose condition, which was mediated by p38MAPK activation. MD2 knockout or pharmacological inhibitor C30 completely rescued AMPK signaling through p38MAPK inhibition. Importantly, C30 treatment significantly prevented myocardial damage and dysfunction in T1DM mice evidenced by improved cardiac function and reduced cardiomyocyte apoptosis and cardiac fibrosis. Furthermore, the therapeutic effect of C30 on DCM was correlated to p38MAPK inhibition and AMPK pathway activation in vivo and in vitro. In conclusion, MD2 inhibition exhibits therapeutic effects on DCM through p38MAPK inhibition and AMPK activation, which enables MD2 a promising target for DCM treatment by suppressing metaflammation and improving cardiac metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbadis.2022.166369DOI Listing

Publication Analysis

Top Keywords

p38mapk inhibition
16
inhibition ampk
12
ampk pathway
12
md2 knockout
12
myeloid differential
8
differential protein-2
8
diabetic cardiomyopathy
8
pathway activation
8
md2
8
therapeutic effects
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!