Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ion recognition has attracted great attention in the past decades because of its important role in biology, medicine, environment, and chemistry. The combination of rigidity, curved structure and amphiphilic nature makes bile acids a host system for ion recognition. In addition, the availability of hydroxyl groups in bile acids can be used for further derivatization to develop various ion recognition receptors. The detection of ions is revealed by the binding constant k value, log approach, and UV-visible or H NMR titration, while visual detection is determined by gel-phase transition, colorimetric and fluorescent probes. In this review, we have discussed the bile acid-based receptors and their ion-recognition capability. These bile acid-based systems have the potential for the development of anion transport for biological activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.steroids.2022.108981 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!