Jumping performance is one of the key components of volleyball game, thus evaluating jumping ability through different biomechanical variables offers opportunity for performance optimization. The aim of this study was to assess the associations between reactive strength index (RSI), reactive strength index modified (RSImod) and approach jump performance in male volleyball players. Forty volleyball players performed drop jump (DJ) form 40 cm high box, bilateral and unilateral countermovement jumps (CMJ) and approach jump. RSI in DJ was calculated as the ratio between jump height and ground contact time, while the RSI in CMJ tasks (RSImod) was calculated as ratio between jump height and jump time. Our results indicate that the relationships among different RSI variants and approach jump in volleyball players are moderate to strong (r = 0.42-0.73), with the highest correlations being observed for RSImod from bilateral CMJ (r = 0.676-0.727). Those observations are in line with the principle of movement specificity, which suggests that the best performance indicator should be the task that best resembles the demands of the sport-specific movements. Further research is needed to reveal more about the potential of implementing these findings for training optimization through monitoring RSI and RSImod values.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8853549PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0264144PLOS

Publication Analysis

Top Keywords

reactive strength
16
approach jump
16
volleyball players
12
strength modified
8
jump
8
jump performance
8
calculated ratio
8
ratio jump
8
jump height
8
performance
5

Similar Publications

Background: Inclusion body myositis (IBM) is the most prevalent muscle disease in adults for which no current treatment exists. The pathogenesis of IBM remains poorly defined. In this study, we aimed to explore the interplay between inflammation and mitochondrial dysfunction in IBM.

View Article and Find Full Text PDF

In this study, chitosan (C)-polyvinyl alcohol (P) edible film containing bio-fabricated nanosilver particles (nAg) (as antimicrobial agent) and beetroot peel extract (BRPE) (as antioxidant agent and pH indicator) was used as spoilage indicator in cold-stored rainbow trout fillets. DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity (43.02%), reducing power (2.

View Article and Find Full Text PDF

A one-step and solvent-free strategy for high lignin-containing polyurethane elastomers with excellent mechanical and shape memory performance.

Int J Biol Macromol

December 2024

Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Waihuan Xi Road 100, Guangzhou, Guangdong 510006, PR China.

Lignin, a renewable and biodegradable polymer, offers a promising alternative to petroleum-based polyols for polyurethane elastomer synthesis. However, its complex structure poses challenges, such as poor dispersibility and reactivity. This study introduces a novel one-step and solvent-free method for synthesizing lignin-containing polyurethane elastomers (SF-LPUes-ONE) with a high lignin substitution rate of at least 30 wt%.

View Article and Find Full Text PDF

Socioeconomic position interacts with the genetic effect of a CRP gene common variant to influence C-reactive protein values.

Sci Rep

December 2024

Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany.

Objectives: C-Reactive Protein (CRP) values are partly determined by variation at the CRP gene locus, but also influenced by socioeconomic position (SEP) and related lifestyle factors. As gene-by-SEP interactions have been suggested for traits associated with CRP and SEP (e.g.

View Article and Find Full Text PDF

Dyeing of synthetic fiber-based wool blended fabrics in supercritical carbon dioxide.

Sci Rep

December 2024

Dyeing, Printing and Textile Auxiliaries Department, Textile Research and Technology Institute, National Research Centre, 33 EL Buhouth St., Dokki, 12622, Giza, Egypt.

Development of supercritical carbon dioxide (SC-CO) dyeing technology for natural fabrics and their blended fabrics is essential for the textile industry due to environmental and economic considerations. Wool (W), polyester (PET) and nylon (N) fabrics and their wool/polyester (W/PET) and wool/nylon (W/N) blended fabrics were dyed in SC-CO medium with a synthesized reactive disperse dye containing a vinylsulphone (VS) reactive group, which behaves as a disperse dye for synthetic fibers and a reactive dye for protein fibers. The SC-CO dyeing performance of all fabrics was investigated in terms of color strength, fixation, colorimetric and fastness measurements and compared with the conventional aqueous dyeing method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!