Structural factors can influence hospital costs beyond case-mix differences. However, accepted measures on how to distinguish hospitals with regard to cost-related organizational and regional differences are lacking in Switzerland. Therefore, the objective of this study was to identify and assess a comprehensive set of hospital attributes in relation to average case-mix adjusted costs of hospitals. Using detailed hospital and patient-level data enriched with regional information, we derived a list of 23 cost predictors, examined how they are associated with costs, each other, and with different hospital types, and identified principal components within them. Our results showed that attributes describing size, complexity, and teaching-intensity of hospitals (number of beds, discharges, departments, and rate of residents) were positively related to costs and showed the largest values in university (i.e., academic teaching) and central general hospitals. Attributes related to rarity and financial risk of patient mix (ratio of rare DRGs, ratio of children, and expected loss potential based on DRG mix) were positively associated with costs and showed the largest values in children's and university hospitals. Attributes characterizing the provision of essential healthcare functions in the service area (ratio of emergency/ ambulance admissions, admissions during weekends/ nights, and admissions from nursing homes) were positively related to costs and showed the largest values in central and regional general hospitals. Regional attributes describing the location of hospitals in large agglomerations (in contrast to smaller agglomerations and rural areas) were positively associated with costs and showed the largest values in university hospitals. Furthermore, the four principal components identified within the hospital attributes fully explained the observed cost variations across different hospital types. These uncovered relationships may serve as a foundation for objectifying discussions about cost-related heterogeneity in Swiss hospitals and support policymakers to include structural characteristics into cost benchmarking and hospital reimbursement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8853497PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0264212PLOS

Publication Analysis

Top Keywords

costs largest
16
largest values
16
associated costs
12
hospitals
9
comprehensive set
8
structural factors
8
hospital
8
costs
8
hospital costs
8
hospital attributes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!