Chirality is a critical issue in pharmaceutics, forensic chemistry, therapeutic drug monitoring, doping control, toxicology, or environmental investigations as enantiomers of a chiral compound can exhibit different activities, i.e., one enantiomer can have the desired effect while the other one can be inactive or even toxic. To monitor enantioselective metabolism or toxicokinetic/toxicodynamic mechanisms in extremely low content in biological or environmental matrices, sample preparation is vital. The present review describes current status of development of liquid-phase microextraction approaches such as hollow fiber liquid-phase microextraction (HF-LPME), electromembrane extraction (EME), dispersive liquid-liquid microextraction (DLLME), and supramolecular solvent-based microextraction (SSME), used for sample preparation of enantiomers/chiral compounds. The advantages and limitations of the above techniques are discussed. Attention is also focused on chiral separation approaches commonly applied to study the stereo-selective metabolism or toxicokinetic/toxicodynamic mechanisms of enantiomers in the biological and environmental samples.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10408347.2022.2038072DOI Listing

Publication Analysis

Top Keywords

liquid-phase microextraction
12
microextraction approaches
8
metabolism toxicokinetic/toxicodynamic
8
toxicokinetic/toxicodynamic mechanisms
8
biological environmental
8
sample preparation
8
approaches preconcentration
4
preconcentration analysis
4
analysis chiral
4
chiral compounds
4

Similar Publications

Background: Benzodiazepine abuse remains a significant public health concern. Current sample preparation methods for benzodiazepine analysis from human serum often involve complex procedures that require large sample volumes and extensive organic solvent use. To address these limitations, this study presents a novel and efficient sample preparation method utilizing 3D-printed sorbent devices.

View Article and Find Full Text PDF

Sample preparation using deep eutectic solvents in combination with nanomaterials in analytical procedures: A review.

Anal Chim Acta

February 2025

School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea. Electronic address:

Background: Sample preparation can be a critical stage of analytical procedures that profoundly influences their performance, environmental impact, and overall efficiency. While nanomaterials have revolutionized sample preparation owing to their high surface area-to-volume ratios, tunable surface chemistry, and enhanced adsorption capacities, limitations persist. Researchers have ushered in a new era of efficient sample preparation methodologies that could overcome the limitations of nanomaterials by introducing deep eutectic solvents (DESs), which have unique advantages such as low volatility and toxicity, biodegradability, and tunability.

View Article and Find Full Text PDF

Natural Eutectic Solvent-Based Temperature-Controlled Liquid-Liquid Microextraction and Nano-Liquid Chromatography for the Analysis of Herbal Aqueous Samples.

Foods

December 2024

Departamento de Química, Área de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38206 San Cristóbal de La Laguna, Tenerife, Spain.

In this work, two novel (-)-menthol-based hydrophobic natural eutectic solvents with vanillin and cinnamic acid were prepared and applied as extraction solvents. In this regard, 12 endocrine disruptors, including phenol, 2,4-dimethylphenol, 2,3,6-trimethylphenol, 4--butylphenol, 4--butylphenol, 4--amylphenol, 4--hexylphenol, 4--octylphenol, 4--heptylphenol, 4--octylphenol, and 4--nonylphenol and bisphenol A, were studied in a green tea drink. A temperature-controlled liquid-liquid microextraction was used as the extraction method, and nano-liquid chromatography-ultraviolet detection was used as the separation and determination system.

View Article and Find Full Text PDF

A flat membrane-based liquid-phase microextraction (FM-LPME) method was developed for the first time to simultaneously separate and extract basic and acidic pesticide analytes from the same sample. Using carbendazim and pirimicarb as representative basic pesticides, along with bromacil, diflubenzuron and 1,2-dibenzoyl-1‑tert-butylhydrazine (RH-5849) as representative acidic pesticides, the performance of FM-LPME for the extraction of these model pesticides has been optimised individually. Under optimal extraction conditions, the developed FM-LPME-LC-MS/MS method exhibited excellent linearity, with R values exceeding 0.

View Article and Find Full Text PDF

A new analytical method was developed for the determination of 14 multiclass emerging organic contaminants in surface waters using LC-MS, and Dispersive Liquid-Liquid Microextraction (DLLME) for extraction. Different Natural Deep Eutectic Solvents (NADESs) composed of terpenes and organic acids were tested as extraction solvents and characterized by Fourier Transform Infrared Spectroscopy (FTIR), Hydrogen Nuclear Magnetic Resonance Spectroscopy (H-NMR), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), density, and viscosity, eliminating the need to use traditional chlorinated solvents. NADES produced with butyric acid and thymol showed the best results and was selected for application for the first time in the extraction of emerging organic contaminants of different classes in water samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!