As one of the most attractive inorganics to improve the thermoelectric (TE) performance of the conducting polymers, tellurium (Te) has received intense concern due to its superior Seebeck coefficient (). However, far less attention has been paid to polypyrrole (PPy)/Te TE composites to date. In this work, we present an innovative full-electrochemical method to architect PPy/Te TE composite films by sequentially depositing Te with large and PPy with high electrical conductivity (σ). Consequently, the PPy/Te composite films achieved excellent TE performance, with the largest power factor (PF) reaching up to 234.3 ± 4.1 μW m K. To the best of our knowledge, this value approaches the reported highest PF record (240.3 ± 5.0 μW m K) for PPy-based composites. This suggests that the modified full-electrochemical method is a feasible and effective strategy for achieving high-performance TE composite films, which would probably provide a general guideline for the design and preparation of excellent TE materials in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c22731 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
Two-dimensional (2D) Ruddlesden-Popper perovskites (RPPs) have garnered significant attention due to their enhanced stability compared with their three-dimensional counterparts. However, the power conversion efficiency (PCE) of 2D perovskite solar cells (2D-PSCs) remains lower than that of 3D-PSCs. Understanding the microstructural evolution of 2D perovskite films during fabrication is essential for improving their performance.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, 532 10, Czech Republic.
Radio frequency magnetron co-sputtering method employing GeTe and Sc targets was exploited for the deposition of Sc doped GeTe thin films. Different characterization techniques (scanning electron microscopy with energy-dispersive X-ray analysis, X-ray diffraction, atomic force microscopy, sheet resistance temperature-dependent measurements, variable angle spectroscopic ellipsometry, and laser ablation time-of-flight mass spectrometry) were used to evaluate the properties of as-deposited (amorphous) and annealed (crystalline) Ge-Te-Sc thin films. Prepared amorphous thin films have GeTe, GeTeSc, GeTeSc, GeTeSc and GeTeSc chemical composition.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, P.R. China.
Indium (In) reduction is a hot topic in transparent conductive oxide (TCO) research. So far, most strategies have been focused on reducing the layer thickness of In-based TCO films and exploring TCOs. However, no promising industrial solution has been obtained yet.
View Article and Find Full Text PDFDalton Trans
January 2025
Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile.
Recalcitrant pollutants are challenging to degrade during water treatment processes. Methylene blue (MB), a cationic dye, is particularly resistant to degradation and is environmentally persistent. Heterogeneous photocatalysis has emerged as a suitable strategy for removing such pollutants from water.
View Article and Find Full Text PDFSci Rep
January 2025
Condensed Matter Physics & Nanoscience Research Laboratory, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010, U.P, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!