A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Vertically Aligned Micropillar Arrays Coated with a Conductive Polymer for Advanced Pseudocapacitance Energy Storage. | LitMetric

Vertically Aligned Micropillar Arrays Coated with a Conductive Polymer for Advanced Pseudocapacitance Energy Storage.

ACS Appl Mater Interfaces

National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.

Published: March 2022

With the development of high-performance supercapacitors, a conductive polymer (CP)-based pseudocapacitance electrode with good electrical conductivity and low processing costs holds a promising application prospect. As the core component of supercapacitors, the CP electrode with adjustable spacing, a high specific surface area, and a faster ion diffusion path has been extensively investigated. Herein, based on accurate top-down photolithography and electropolymerization approaches, we fabricate a CP-coated vertically aligned micropillar array (MPA) electrode. The electrode presents an overwhelming enhanced areal specific capacitance compared with that of a flat configuration, which is partially ascribed to an increased electroactive surface area, two rapid channels for ion diffusion and electron transfer, and enhanced electric field intensity that is provided by the MPA structure. Based on the fabricated CP-based MPA electrode, an asymmetric supercapacitor is assembled with two thiophene derivatives, presenting a high energy density and excellent cycling stability. A supercapacitor system cascading with three asymmetric supercapacitor devices further demonstrates the practical applications by driving the light-emitting diodes. This work provides a good reference for the further development of CP-based energy storage devices with high energy density and superior cycling stability.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c21947DOI Listing

Publication Analysis

Top Keywords

vertically aligned
8
aligned micropillar
8
conductive polymer
8
energy storage
8
surface area
8
ion diffusion
8
mpa electrode
8
asymmetric supercapacitor
8
high energy
8
energy density
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!