InAsP Quantum Dot-Embedded InP Nanowires toward Silicon Photonic Applications.

ACS Appl Mater Interfaces

Department of Electrical and Computer Engineering, University of California Los Angeles, Los Angeles, California 90095, United States.

Published: March 2022

Quantum dot (QD) emitters on silicon platforms have been considered as a fascinating approach to building next-generation quantum light sources toward unbreakable secure communications. However, it has been challenging to integrate position-controlled QDs operating at the telecom band, which is a crucial requirement for practical applications. Here, we report monolithically integrated InAsP QDs embedded in InP nanowires on silicon. The positions of QD nanowires are predetermined by the lithography of gold catalysts, and the 3D geometry of nanowire heterostructures is precisely controlled. The InAsP QD forms atomically sharp interfaces with surrounding InP nanowires, which is in situ passivated by InP shells. The linewidths of the excitonic (X) and biexcitonic (XX) emissions from the QD and their power-dependent peak intensities reveal that the proposed QD-in-nanowire structure could be utilized as a non-classical light source that operates at silicon-transparent wavelengths, showing a great potential for diverse quantum optical and silicon photonic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c21013DOI Listing

Publication Analysis

Top Keywords

inp nanowires
12
nanowires silicon
8
silicon photonic
8
photonic applications
8
inasp quantum
4
quantum dot-embedded
4
inp
4
dot-embedded inp
4
nanowires
4
silicon
4

Similar Publications

Nanoscale light sources are demanded vigorously due to rapid development in photonic integrated circuits (PICs). III-V semiconductor nanowire (NW) lasers have manifested themselves as indispensable components in this field, associated with their extremely compact footprint and ultra-high optical gain within the 1D cavity. In this study, the carrier concentrations of indium phosphide (InP) NWs are actively controlled to modify their emissive properties at room temperature.

View Article and Find Full Text PDF

This article describes an approach to making highly stable copper nanowire networks on any type of substrates. These nanostructured materials are highly sought after for, among other applications, the development of next-generation flexible electronics. Their high susceptibility to oxidation in air currently limits their use in the real world.

View Article and Find Full Text PDF

Single vertical InP nanowire diodes with low ideality factors contacted in-array for high-resolution optoelectronics.

Nanotechnology

December 2024

Division of Synchrotron Radiation Research and NanoLund, Department of Physics, Lund University, Box 118, 22100 Lund, Sweden.

Nanowire (NW) optoelectronic and electrical devices offer unique advantages over bulk materials but are generally made by contacting entire NW arrays in parallel. In contrast, ultra-high-resolution displays and photodetectors require electrical connections to individual NWs inside an array. Here, we demonstrate a scheme for fabricating such single NW vertical devices by contacting individual NWs within a dense NW array.

View Article and Find Full Text PDF

Josephson junctions are typically characterized by a single phase difference across two superconductors. This conventional two-terminal Josephson junction can be generalized to a multiterminal device where the Josephson energy contains terms with contributions from multiple independent phase variables. Such multiterminal Josephson junctions (MTJJs) are being considered as platforms for engineering effective Hamiltonians with nontrivial topologies, such as Weyl crossings and higher-order Chern numbers.

View Article and Find Full Text PDF

Surface acoustic waves are a powerful tool for controlling quantum systems, including quantum dots (QDs), where the oscillating strain field can modulate the emission wavelengths. We integrate InAsP/InP nanowire QDs onto a thin-film lithium niobate platform and embed them within SiN-loaded waveguides. We achieve a 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!