Protozoan phagotrophy from predators to parasites: An overview of the enigmatic cytostome-cytopharynx complex of Trypanosoma cruzi.

J Eukaryot Microbiol

Department of Cellular Biology, Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, Georgia, USA.

Published: November 2022

Eating is fundamental and from this basic principle, living organisms have evolved innumerable strategies to capture energy and nutrients from their environment. As part of the world's aquatic ecosystems, the expansive family of heterotrophic protozoans uses self-generated currents to funnel prokaryotic prey into an ancient, yet highly enigmatic, oral apparatus known as the cytostome-cytopharynx complex prior to digestion. Despite its near ubiquitous presence in protozoans, little is known mechanistically about how this feeding organelle functions. Intriguingly, one class of these flagellated phagotrophic predators known as the kinetoplastids gave rise to a lineage of obligate parasitic protozoa, the trypanosomatids, that can infect a wide variety of organisms ranging from plants to humans. One parasitic species of humans, Trypanosoma cruzi, has retained this ancestral organelle much like its free-living relatives and continues to use it as its primary mode of endocytosis. In this review, we will highlight foundational observations made regarding the cytostome-cytopharynx complex and examine some of the most pressing questions regarding the mechanistic basis for its function. We propose that T. cruzi has the potential to serve as an excellent model system to dissect the enigmatic process of protozoal phagotrophy and thus enhance our overall understanding of fundamental eukaryotic biology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11110969PMC
http://dx.doi.org/10.1111/jeu.12896DOI Listing

Publication Analysis

Top Keywords

cytostome-cytopharynx complex
12
trypanosoma cruzi
8
protozoan phagotrophy
4
phagotrophy predators
4
predators parasites
4
parasites overview
4
overview enigmatic
4
enigmatic cytostome-cytopharynx
4
complex trypanosoma
4
cruzi eating
4

Similar Publications

Protozoan phagotrophy from predators to parasites: An overview of the enigmatic cytostome-cytopharynx complex of Trypanosoma cruzi.

J Eukaryot Microbiol

November 2022

Department of Cellular Biology, Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, Georgia, USA.

Eating is fundamental and from this basic principle, living organisms have evolved innumerable strategies to capture energy and nutrients from their environment. As part of the world's aquatic ecosystems, the expansive family of heterotrophic protozoans uses self-generated currents to funnel prokaryotic prey into an ancient, yet highly enigmatic, oral apparatus known as the cytostome-cytopharynx complex prior to digestion. Despite its near ubiquitous presence in protozoans, little is known mechanistically about how this feeding organelle functions.

View Article and Find Full Text PDF

Remarkable kinetoplast, cytostome-cytopharynx complex, and storage-related structures as dissected by three-dimensional reconstruction of Trypanosoma sp. 858 isolated from a toad (Amphibia: Anura).

Micron

January 2022

Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens-INBEB, and Centro Nacional de Biologia Estrutural e Bioimagem-CENABIO, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ21941-902, Brazil.

In Brazil, the Trypanosoma sp. 858 was isolated from a toad (Anura: Bufonidae: Rhinella ictericus) and successfully maintained in cultures. We previously demonstrated that this trypanosome is different but tightly clustered phylogenetically with other trypanosomes from anurans.

View Article and Find Full Text PDF

Dynamics of the orphan myosin MyoF over Trypanosoma cruzi life cycle and along the endocytic pathway.

Parasitol Int

February 2022

Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Instituto Nacional de Biologia Estrutural e Bioimagem and Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Brazil. Electronic address:

Trypanosoma cruzi proliferative forms perform endocytosis through a specialized structure named the cytostome-cytopharynx complex (SPC). The SPC is a specialized invagination of the cell membrane that extends through the cell body towards the posterior regions, with its aperture close to the flagellar pocket. Recently, diverse proteins were found along the cytopharynx, including two myosin motors.

View Article and Find Full Text PDF

The cytostome-cytopharynx complex of intracellular and extracellular amastigotes of Trypanosoma cruzi exhibit structural and functional differences.

Cell Microbiol

September 2021

Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.

Endocytosis in Trypanosoma cruzi is mainly performed through a specialised membrane domain called cytostome-cytopharynx complex. Its ultrastructure and dynamics in endocytosis are well characterized in epimastigotes, being absent in trypomastigotes, that lack endocytic activity. Intracellular amastigotes also possess a cytostome-cytopharynx but participation in endocytosis of these forms is not clear.

View Article and Find Full Text PDF

Of the pathogenic trypanosomatids, alone retains an ancient feeding apparatus known as the cytotome-cytoharynx omplex (SPC) that it uses as its primary mode of endocytosis in a manner akin to its free-living kinetoplastid relatives who capture and eat bacterial prey via this endocytic organelle. In a recent report, we began the process of dissecting how this organelle functions by identifying the first SPC-specific proteins in Here, we continued these studies and report on the identification of the first enzymatic component of the SPC, a previously identified orphan myosin motor (MyoF) specifically targeted to the SPC. We overexpressed MyoF as a dominant-negative mutant, resulting in parasites that, although viable, were completely deficient in measurable endocytosis To our surprise, however, a full deletion of MyoF demonstrated only a decrease in the overall rate of endocytosis, potentially indicative of redundant myosin motors at work.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!