Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Wind waves and suspended solids (SS) generated by the resuspension of sediments are ubiquitous characteristics of lake ecosystems. However, their effects on phytoplankton remain poorly elucidated in shallow eutrophic lakes. Laboratory experiments were carried out to investigate the responses of Microcystis aeruginosa to SS under static (wind speed of 0 m/s) and breeze (wind speed of 3 m/s) conditions. Results showed that 50 mg/L SS can promote the growth of M. aeruginosa, accelerate the formation of colonies, and increase the floating rate under no-wind conditions. Comparing with static environment, breeze can significantly increase the growth rate of M. aeruginosa and benefit the formation of larger colonies of algae cells. Driven by wind and SS, the buoyancy of the cyanobacteria community in different experimental groups was obviously different. The specific performance was that low SS concentration and breeze were in favor of the floating of cyanobacteria, while high SS concentration went against the floating of algal cells. As a conclusion, wind speed of 3 m/s and 20-50 mg/L SS have a synergistic effect on the formation of cyanobacterial blooms. This study can provide an improved current understanding of bloom formation and turbidity management strategies in shallow eutrophic lakes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-022-19231-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!