A pressure-induced ratiometric signalling chemosensor: a case of helical anthracenes.

Chem Commun (Camb)

Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan.

Published: March 2022

AI Article Synopsis

  • The helical anthracene [4]HA shows changes in fluorescence when subjected to hydrostatic pressure due to a specific photochemical reaction.
  • This change in fluorescence is tied to the intramolecular [4+4] photocyclodimerization that occurs as pressure increases.
  • By measuring the resulting ratiometric fluorescence, scientists can potentially determine unknown pressures in various solutions.

Article Abstract

One of the helical anthracenes, [4]HA, in which two fused anthracene ends are spatially arranged top and bottom, exhibits a ratiometric fluorescence response due to the hydrostatic pressure-dependent intramolecular [4+4] photocyclodimerization. This ratiometric signalling comes from the formation of an intramolecular stacked species and its subsequent photoreaction upon hydrostatic pressurization. The ratiometric indexes as a function of hydrostatic pressure may enable us to quantify an unknown pressure in solutions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cc00428cDOI Listing

Publication Analysis

Top Keywords

ratiometric signalling
8
helical anthracenes
8
pressure-induced ratiometric
4
signalling chemosensor
4
chemosensor case
4
case helical
4
anthracenes helical
4
anthracenes [4]ha
4
[4]ha fused
4
fused anthracene
4

Similar Publications

Engineering Acid-Promoted Two-Photon Ratiometric Nanoprobes for Evaluating HClO in Lysosomes and Inflammatory Bowel Disease.

ACS Appl Mater Interfaces

January 2025

Anhui Provincial Key Laboratory of Biomedical Materials and Chemical Measurement, Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.

HClO is considered a potential contributing factor and biomarker of inflammatory bowel disease (IBD). Accurate monitoring of lysosomal HClO is important for further developing specific diagnostic and therapeutic schedules for IBD. However, only rare types of fluorescent probes have been reported for detecting HClO in IBD so far.

View Article and Find Full Text PDF

The excessive use of pesticides is an urgent issue facing environmental sustainability and human health. In this study, a uniform dispersion size, good fluorescence performance and mesoporous structure of a ratiometric fluorescent probe were constructed for nicosulfuron detection. A solvent-free in situ solid-phase synthesis method was used to encapsulate biomass carbon dots within mesoporous silica (CDs@mSiO₂), followed by the modification of l-cysteine-modified manganese-doped zinc sulfide quantum dots (ZnS:Mn QDs), to construct a ratiometric fluorescent probe for highly sensitive and selective detection of nicosulfuron.

View Article and Find Full Text PDF

() is a major pathogenic bacterium responsible for bacterial foodborne diseases, making its rapid, specific, and accurate detection crucial. In this study, we develop a ratiometric biosensor based on the recombinase polymerase amplification-clustered regularly interspaced short palindromic repeats/CRISPR associated protein 12a (RPA-CRISPR/Cas12a) system and Eu-metal-organic framework (Eu-MOF) fluorescent nanomaterials for the high-sensitivity detection of , combining with RPA for efficient isothermal amplification, this sensor enhances specificity and sensitivity by utilizing the target activation of CRISPR/Cas12a. The Eu-MOF serves a dual function, providing stable red fluorescence as a reference signal and adsorbing FAM-labeled probes for fluorescence quenching, forming a dual-signal system that significantly reduces background interference.

View Article and Find Full Text PDF

Portable dual-function ratio-type triple-emission molecularly imprinted fluorescence sensor for the simultaneous visual detection of hepatitis A and B viruses.

Anal Chim Acta

January 2025

The key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, China. Electronic address:

Background: Viral epidemics have long endangered human health and had dramatic impacts on environment and society. The currently known viruses and the rapid emergence of previously unknown viruses lead to an urgent need for effective virus detection strategies. It is important to develop methods that can detect multiple related viruses simultaneously in order to improve detection efficiency and to avoid treatment delays due to misdiagnoses.

View Article and Find Full Text PDF

Detection of microRNA-21 based on smartly designed ratiometric electrochemical sensor and dual-signal amplification.

Anal Chim Acta

January 2025

Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Medicine, Linyi University, Linyi, China. Electronic address:

MicroRNA (miRNA) serves as an effective and viable biomarker for early diagnosis and monitoring of cancer disorders. It is highly expressed in tumor cells, including lung cancer, liver cancer and lymphoma. Herein, we propose a ratiometric electrochemical sensor for ultrasensitive detection of miRNA-21 using dual signal amplification, hybridization chain reaction and Exo III assisted-amplification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!