A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Transgenic HepaRG cells expressing CYP2D6 as an improved model of primary human hepatocytes. | LitMetric

Transgenic HepaRG cells expressing CYP2D6 as an improved model of primary human hepatocytes.

Pharmacol Res Perspect

Stem Cells & Reprogramming Laboratory, Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan.

Published: April 2022

CYP2D6 and CYP3A4, which are members of the cytochrome P450 superfamily of metabolic enzymes, play major roles in the metabolism of commonly available drugs. CYP3A4 is involved in the metabolism of 50% of drugs on the market, whereas CYP2D6 is involved in the metabolism of 25% of them. CYP2D6 exhibits a high degree of polymorphic nature in the human population, causing individual differences in CYP2D6 expression and enzymatic activity. Therefore, accurate prediction of drug metabolism and toxicity require a human adult hepatocyte cell model that mimics individual responses in the average population. HepaRG cells, a human hepatocellular carcinoma cell line, is the only cell line that can differentiate into hepatocyte-like cells with high expression of CYP3A4 but poor expression of CYP2D6. To solve this problem, we developed transgenic HepaRG cell clones expressing either full-length or spliced CYP2D6 at various levels with an easy monitoring system for CYP2D6 expression in living cells under a fluorescent microscope. As CYP2D6 mRNA, protein, and fluorescence intensity were closely correlated among transgenic HepaRG clones, fluorescence levels will provide a simple tool for quality assurance of CYP2D6-expressing HepaRG cells. Thus, the package of transgenic HepaRG cell clones expressing CYP2D6 at various levels will provide an improved hepatocyte model that reflects the average or individual reactions in the human population for in vitro studies of drug metabolism and toxicity involving CYP2D6 and CYP3A4.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8851295PMC
http://dx.doi.org/10.1002/prp2.939DOI Listing

Publication Analysis

Top Keywords

transgenic heparg
16
heparg cells
12
cyp2d6
10
expressing cyp2d6
8
cyp2d6 cyp3a4
8
involved metabolism
8
human population
8
cyp2d6 expression
8
drug metabolism
8
metabolism toxicity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!