Subtidal marine sediments are one of the planet's primary carbon stores and strongly influence the oceanic sink for atmospheric CO . By far the most widespread human activity occurring on the seabed is bottom trawling/dredging for fish and shellfish. A global first-order estimate suggested mobile demersal fishing activities may cause 0.16-0.4 Gt of organic carbon (OC) to be remineralized annually from seabed sediment carbon stores (Sala et al., 2021). There are, however, many uncertainties in this calculation. Here, we discuss the potential drivers of change in seabed sediment OC stores due to mobile demersal fishing activities and conduct a literature review, synthesizing studies where this interaction has been directly investigated. Under certain environmental settings, we hypothesize that mobile demersal fishing would reduce OC in seabed stores due to lower production of flora and fauna, the loss of fine flocculent material, increased sediment resuspension, mixing and transport and increased oxygen exposure. Reductions would be offset to varying extents by reduced faunal bioturbation and community respiration, increased off-shelf transport and increases in primary production from the resuspension of nutrients. Studies which directly investigated the impact of demersal fishing on OC stocks had mixed results. A finding of no significant effect was reported in 61% of 49 investigations; 29% reported lower OC due to fishing activities, with 10% reporting higher OC. In relation to remineralization rates within the seabed, four investigations reported that demersal fishing activities decreased remineralization, with three reporting higher remineralization rates. Patterns in the environmental and experimental characteristics between different outcomes were largely indistinct. More evidence is urgently needed to accurately quantify the impact of anthropogenic physical disturbance on seabed carbon in different environmental settings and to incorporate full evidence-based carbon considerations into global seabed management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9307015PMC
http://dx.doi.org/10.1111/gcb.16105DOI Listing

Publication Analysis

Top Keywords

demersal fishing
24
mobile demersal
16
fishing activities
16
seabed
8
carbon stores
8
seabed sediment
8
directly investigated
8
environmental settings
8
reporting higher
8
remineralization rates
8

Similar Publications

Environmental DNA Insights into the Spatial Status of Fish Diversity in the Mainstem of the Jialing River.

Animals (Basel)

January 2025

Laboratory of Water Ecological Health and Environmental Safety, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China.

Preserving healthy river habitats is essential for maintaining fish diversity. Over time, anthropogenic activities have severely damaged river habitats, leading to notable changes in fish diversity patterns. Conducting thorough and reliable investigations into fish diversity is crucial for assessing anthropogenic impacts on diversity.

View Article and Find Full Text PDF

Hybridization is relatively common between closely related species that share part of their distribution. Understanding its dynamics is important both for conservation purposes and to determine its role as an evolutionary mechanism. Here we have studied the case of black hakes (Merluccius polli and Merluccius senegalensis) in its contact zone.

View Article and Find Full Text PDF

Backward swimming in elongated-bodied abyssal demersal fishes: Synaphobranchidae, Macrouridae, and Ophidiidae.

J Fish Biol

January 2025

Minderoo-UWA Deep-Sea Research Centre, School of Biological Sciences and Oceans Institute, The University of Western Australia, Perth, Western Australia, Australia.

The deep-sea demersal fish fauna is characterized by a prevalence of elongated-body forms with long tapering tails. Using baited camera landers at depths of 4500-6300 m in the Pacific Ocean, we observed multiple instances of backward swimming using reverse undulation of the slender body in four species: the cutthroat eel Ilyophis robinsae, abyssal grenadier Coryphaenoides yaquinae, and cusk-eels Bassozetus sp. and Barathrites iris.

View Article and Find Full Text PDF

Climate change can impact marine ecosystems through many biological and ecological processes. Ecosystem models are one tool that can be used to simulate how the complex impacts of climate change may manifest in a warming world. In this study, we used an end-to-end Atlantis ecosystem model to compare and contrast the effects of climate-driven species redistribution and projected temperature from three separate climate models on species of key commercial importance in the California Current Ecosystem.

View Article and Find Full Text PDF

Sorting grids to exclude the juveniles of species targeted by bottom trawl fisheries from the catch are among the most promising solutions to reduce discards. We tested a two-sections Juveniles' Sorting Grid (JSG) in a Mediterranean fisheries restricted area. First, we provided information on the vitality of individuals escaping from the JSG bars during towing, by analysing underwater footage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!