Antibiotics are often used to treat systemic diseases not associated with the oral cavity. This application of antibiotics may affect the healthy oral microbiota community, as it destroys the balance between specific bacterial populations throughout the ecosystem and may lead to dysbacteriosis. We hypothesized that the effects on antibiotics on oral microbiota regulation and function would affect antibody content in saliva, depending on the antibiotic type. To address this, a total of 24 Sprague Dawley rats (divided into 4 cages, 6 per pen) were administered amoxicillin (AMX), spiramycin (SP), metronidazole (MTZ), or water (control) daily for 14 days (gavage). After treatment was completed, high-throughput sequencing of 16S rRNA genes was used to determine changes in the composition, metabolic function, and diversity of oral microbiota in the rats. Enzyme-linked immunosorbent assay was used to detect antibodies in saliva, including SIgA, IgG, and IgM. Results showed that AMX, MTZ, and SP significantly affected oral microbiota composition, diversity, and metabolic function in rats. AMX induced substantial changes in the rat salivary antibody concentrations. At the genus level, the relative abundance of and was higher in the AMX group than in the other groups. In conclusion, antibiotics-induced changes in oral microbiota populations may be associated with changes in salivary antibody concentrations. However, the specific interaction mechanisms remain unknown, and it is still unclear whether significant changes in the oral microbiota cause changes in salivary antibody concentrations or .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8843035 | PMC |
http://dx.doi.org/10.3389/fcimb.2022.721691 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!