The accurate, objective, and reproducible evaluation of tumor response to therapy is indispensable in clinical trials. This study aimed at investigating the reliability and reproducibility of a computer-aided contouring (CAC) tool in tumor measurements and its impact on evaluation of tumor response in terms of RECIST 1.1 criteria. A total of 200 cancer patients were retrospectively collected in this study, which were randomly divided into two sets of 100 patients for experiential learning and testing. A total of 744 target lesions were identified by a senior radiologist in distinctive body parts, of which 278 lesions were in data set 1 (learning set) and 466 lesions were in data set 2 (testing set). Five image analysts were respectively instructed to measure lesion diameter using manual and CAC tools in data set 1 and subsequently tested in data set 2. The interobserver variability of tumor measurements was validated by using the coefficient of variance (CV), the Pearson correlation coefficient (PCC), and the interobserver correlation coefficient (ICC). We verified that the mean CV of manual measurement remained constant between the learning and testing data sets (0.33 vs. 0.32, = 0.490), whereas it decreased for the CAC measurements after learning (0.24 vs. 0.19, < 0.001). The interobserver measurements with good agreement (CV < 0.20) were 29.9% (manual) vs. 49.0% (CAC) in the learning set ( < 0.001) and 30.9% (manual) vs. 64.4% (CAC) in the testing set ( < 0.001). The mean PCCs were 0.56 ± 0.11 mm (manual) vs. 0.69 ± 0.10 mm (CAC) in the learning set ( = 0.013) and 0.73 ± 0.07 mm (manual) vs. 0.84 ± 0.03 mm (CAC) in the testing set ( < 0.001). ICCs were 0.633 (manual) vs. 0.698 (CAC) in the learning set ( < 0.001) and 0.716 (manual) vs. 0.824 (CAC) in the testing set ( < 0.001). The Fleiss' kappa analysis revealed that the overall agreement was 58.7% (manual) vs. 58.9% (CAC) in the learning set and 62.9% (manual) vs. 74.5% (CAC) in the testing set. The 80% agreement of tumor response evaluation was 55.0% (manual) vs. 66.0% in the learning set and 60.6% (manual) vs. 79.7% (CAC) in the testing set. In conclusion, CAC can reduce the interobserver variability of radiological tumor measurements and thus improve the agreement of imaging evaluation of tumor response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8841678 | PMC |
http://dx.doi.org/10.3389/fonc.2021.691638 | DOI Listing |
Background: Dyspnoea is one of the emergency department's (ED) most common and deadly chief complaints, but frequently misdiagnosed and mistreated. We aimed to design a diagnostic decision support which classifies dyspnoeic ED visits into acute heart failure (AHF), exacerbation of chronic obstructive pulmonary disease (eCOPD), pneumonia and "other diagnoses" by using deep learning and complete, unselected data from an entire regional health care system.
Methods: In this cross-sectional study, we included all dyspnoeic ED visits of patients ≥ 18 years of age at the two EDs in the region of Halland, Sweden, 07/01/2017-12/31/2019.
Methods Mol Biol
December 2024
School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
The detached leaf assay is a valuable method for studying plant-pathogen interactions, enabling the assessment of pathogenicity, plant resistance, and treatment effects. In this protocol, we outline how to set up a Phytophthora detached leaf assay and use non-expert machine learning tools to increase the reliability and throughput of the image analysis. Utilizing ilastik for pixel classification and Python scripts for segmentation, manual correction, and temporal linking, the pipeline provides objective and quantitative data over time.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China.
Zearalenone (ZEN) has been detected in both pet food ingredients and final products, causing acute toxicity and chronic health problems in pets. Therefore, the early detection of mycotoxin contamination in pet food is crucial for ensuring the safety and well-being of animals. This study aims to develop a rapid and cost-effective method using an electronic nose (E-nose) and machine learning algorithms to predict whether ZEN levels in pet food exceed the regulatory limits (250 µg/kg), as set by Chinese pet food legislation.
View Article and Find Full Text PDFJ Imaging
December 2024
College of Computer and Information Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia.
With technological advancements, remarkable progress has been made with the convergence of health sciences and Artificial Intelligence (AI). Modern health systems are proposed to ease patient diagnostics. However, the challenge is to provide AI-based precautions to patients and doctors for more accurate risk assessment.
View Article and Find Full Text PDFJ Imaging
December 2024
Radiology Department, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
This study investigates radiomic efficacy in post-surgical traumatic spinal cord injury (SCI), overcoming MRI limitations from metal artifacts to enhance diagnosis, severity assessment, and lesion characterization or prognosis and therapy guidance. Traumatic spinal cord injury (SCI) causes severe neurological deficits. While MRI allows qualitative injury evaluation, standard imaging alone has limitations for precise SCI diagnosis, severity stratification, and pathology characterization, which are needed to guide prognosis and therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!