This project examines kinematic gait parameters as forensic predictors of the influence associated with individuals carrying concealed weighted packs up to 20% of their body weight. An initial inverse dynamics approach combined with computational algebra provided lower limb joint angles during the stance phase of gait as measured from 12 human subjects during normal walking. The following paper describes the additional biomechanical analysis of the joint angle data to produce kinetic and kinematic parameters further characterizing human motion. Results include the rotational velocities and accelerations of the hip, knee, and ankle as well as inertial moments and kinetic energies produced at these joints. The reported findings indicate a non-statistically significant influence of concealed pack load, body mass index, and gender on joint kinetics (p>0.05). Ratios of loaded to unloaded kinematics, however, identified some statistical influence on gait (p<0.05). On-going studies are examining an additional subject cohort with greater pack loads in an effort to identify alterations in gait signatures as a counter-terrorism approach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8846570PMC

Publication Analysis

Top Keywords

biomechanical analysis
8
concealed pack
8
pack load
8
analysis concealed
4
load influences
4
influences terrorist
4
gait
4
terrorist gait
4
gait signatures
4
signatures derived
4

Similar Publications

Impact of backpack load during walking: an EMG and biomechanical analysis.

Med Biol Eng Comput

January 2025

Biomedical Engineering, Bahçeşehir University, Çırağan Caddesi Osmanpaşa Mektebi Sokak No: 4-6 Beşiktaş, İstanbul, 34353, Turkey.

This study aims to understand the impact of backpack carriage, a regular activity for many, on back muscles and joint mobility during walking so that clinicians can develop strategies or products to ensure individuals' safety and well-being. Surface electromyography (EMG) and XSENS Awinda motion capture systems were used to analyze the effects of carrying a backpack (12% of body weight) on erector spinae and multifidus muscles, as well as spinal, hip, knee, and ankle joints. Subjects walked at 4 km/h on flat and inclined surfaces.

View Article and Find Full Text PDF

There is currently little research relating specifically to the muscular strength and endurance requirements of the upper body such as lifts at varying heights, ground floor contact with the hands and inversions such as handstands. Enhanced understanding of muscular demands can inform training program design to build physical tolerance to meet the demand of the activity. The aim of this study was to ascertain the frequency of upper body muscular skills in contemporary and ballet dance performance.

View Article and Find Full Text PDF

Background: Arthroscopic labral repair of the hip is successfully performed with increasing frequency using either knotless or knotted suture anchors, each with its own risks and benefits.

Purpose: To examine biomechanical and clinical outcomes for labral repair of the hip based on the use of knotted or knotless suture anchors.

Study Design: Systematic review; Level of evidence, 4.

View Article and Find Full Text PDF

While the importance of the upper and lower limbs in locomotion is well understood, the kinematics of the trunk during walking remains largely unexplored. Two decades ago, a casual observation was reported indicating spine lengthening in a small sample of mostly children during walking, but this observation was never replicated. Objectives: This study aims to verify the preliminary observation that spine lengthening occurs during walking and to explore changes in spine kinematics across three different age groups.

View Article and Find Full Text PDF

Description and Classification of Training Drills, Based on Biomechanical and Physiological Load, in Elite Basketball.

Sensors (Basel)

January 2025

Facultad de Ciencias de la Actividad Física y del Deporte-INEF, Universidad Politécnica de Madrid, 28040 Madrid, Spain.

The aim of this study was to understand and describe the physiological and biomechanical demands of various tasks used in basketball training and, subsequently, to provide a practical application of these tasks in a typical training week. Twelve basketball players had their external load variables monitored across 179 training sessions (2896 samples) using local positioning system technology. These variables included total distance covered, distance covered at various intensity levels, accelerations, decelerations, PlayerLoad™, and explosive efforts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!