A lack of objective metrics in Sickle Cell Disease (SCD) makes it difficult to assess individual patient therapy options or assess the effects of therapy. This is further complicated by mechanisms of action involving multiple interconnected effects, that combine to relieve SCD symptoms. In 2019, based on the increase in hemoglobin concentration observed in the HOPE trial, the Food and Drug Administration approved voxelotor (Oxbryta®, Global Blood Therapeutics) for SCD patients 12 years and older. The main mechanism of action for voxelotor was increased hemoglobin-oxygen affinity, but other mechanisms may apply. In this study, we assessed the effect of GBT1118, an Oxbryta analog, on hypoxia-induced lethal and sub-hemolytic red blood cell (RBC) membrane damage using RBC Mechanical Fragility (MF), a metric of existing membrane damage and prospective hemolysis. RBC MF was measured non-invasively using a proprietary system comprising an electromagnetic bead mill and fiberoptic spectrophotometry detection. Three cycles of severe hypoxia (<5% oxygenated hemoglobin) with follow-up reoxygenation resulted in a significant increase in RBC MF for all SCD (Hb-S >60%) samples. Supplementation with GBT1118 caused no significant changes in pre-hypoxia RBC MF. However, following GBT1118 treatment, cell stability showed significantly less degradation, as evidenced by a significantly smaller RBC MF increase after three cycles of hypoxia-reoxygenation. These findings indicate that GBT1118 prevents hypoxia-induced membrane damage in sickled RBC, in part by alternative mechanisms not associated with induced changes in hemoglobin-oxygen affinity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8829590PMC

Publication Analysis

Top Keywords

membrane damage
12
red blood
8
severe hypoxia
8
hemoglobin-oxygen affinity
8
three cycles
8
rbc
6
gbt1118
5
gbt1118 voxelotor
4
voxelotor analog
4
analog protects
4

Similar Publications

Objective: Inflammation and oxidative damage play critical roles in the pathogenesis of sepsis-induced cardiac dysfunction. Multiple EGF-like domains 9 (MEGF9) is essential for cell homeostasis; however, its role and mechanism in sepsis-induced cardiac injury and impairment remain unclear.

Methods: Adenoviral and adeno-associated viral vectors were applied to overexpress or knock down the expression of MEGF9 in vivo and in vitro.

View Article and Find Full Text PDF

Soil salinization has resulted in a significant decrease in crop yields, particularly affecting the production of crops like rice ( L.). Prohexadione calcium (Pro-Ca) can enhance crop resilience against failure by managing plant height.

View Article and Find Full Text PDF

Background: Acute type A aortic dissection (A-AAD) with severe acute aortic regurgitation (AR) and coronary involvement is a potentially fatal condition that causes left ventricular volume overload and catastrophic acute myocardial infarction. We present the successful management of a patient using Impella 5.5 following cardiopulmonary arrest caused by A-AAD with severe acute AR and left main trunk (LMT) obstruction.

View Article and Find Full Text PDF

Reduced irradiation exposure areas enhanced anti-tumor effect by inducing DNA damage and preserving lymphocytes.

Mol Med

December 2024

State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, 100871, China.

Background: Partial stereotactic body radiation therapy (SBRT) targeting hypoxic regions of large tumors (SBRT-PATHY) has been shown to enhance the efficacy of tumor radiotherapy by harnessing the radiation-induced immune response. This approach suggests that reducing the irradiation target volume not only achieves effective anti-tumor effects but also minimizes damage to surrounding normal tissues. In this study, we evaluated the antitumor efficacy of reduced-tumour-area radiotherapy (RTRT) , and explored the relationship between tumor control and immune preservation and the molecular mechanisms underlying of them.

View Article and Find Full Text PDF

Drought and cold crucially affect plant growth and distribution. Plants have evolved complex molecular mechanisms to adapt to such adverse environmental conditions. This study examines two Elymus sibiricus (Es) germplasms differing in resilience to these stresses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!