Recently, many reports were published supporting the clinical use of adoptively transferred natural killer (NK) cells as a therapeutic tool against cancer, including acute myeloid leukemia (AML). Our group demonstrated promising clinical response using adoptive immunotherapy with donor-derived alloreactive KIR-ligand-mismatched NK cells in AML patients. Moreover, the antileukemic effect was correlated with the dose of infused alloreactive NK cells ("functional NK cell dose"). Herein, we update the results of our previous study on a cohort of adult AML patients (median age at enrollment 64) in first morphological complete remission (CR), not eligible for allogeneic stem cell transplantation. After an extended median follow-up of 55.5 months, 8/16 evaluable patients (50%) are still off-therapy and alive disease-free. Overall survival (OS) and disease-free survival (DFS) are related with the dose of infused alloreactive NK cells (≥2 × 10/kg).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8841588 | PMC |
http://dx.doi.org/10.3389/fimmu.2021.804988 | DOI Listing |
Cancer Immunol Immunother
December 2024
Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands.
Synovial sarcoma is an aggressive soft-tissue cancer that shows limited responses to current immunotherapeutic approaches using immune checkpoint blockade or adoptive cell therapy. To improve immunotherapy for this cancer, understanding how the immune cells in the tumor microenvironment associate with histological subtype, disease progression and current therapies is vital. To evaluate the immune infiltrate in synovial sarcoma in relation to histological subtype, disease progression and in response to cytotoxic treatment, we performed immunodetection of T cells, CD68 myeloid cells, endothelial cells and keratin on a series of 41 synovial sarcoma patients at various stages of disease.
View Article and Find Full Text PDFBMC Immunol
December 2024
Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
Purpose: Immunotherapy is a promising treatment for cancers but should be optimized for malignant gliomas. Because of immune privilege feature of the brain, local administration of immunotherapy may be a promising strategy for malignant glioma treatment. Identification of patients who may benefit from local immunotherapy is essential.
View Article and Find Full Text PDFCancer Control
December 2024
Hematology Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China.
Background: Natural killer (NK) cell immunotherapy has shown promising therapeutic potential for acute myeloid leukemia (AML), especially with advancements in chimeric antigen receptor-engineered NK cells (CAR-NK) and artificial intelligence (AI). Despite these developments, the field lacks comprehensive bibliometric analyses to identify research hotspots and trends, which could guide future precision treatments.
Methods: A bibliometric analysis of NK cell immunotherapy for AML was conducted using literature from 2000 to 2023 retrieved from the Web of Science Core Collection database.
NPJ Precis Oncol
December 2024
Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
Treatment for malignant primary brain tumors, including glioblastoma, remains a significant challenge despite advances in therapy. CAR-T cell immunotherapy represents a promising alternative to conventional treatments. This review discusses the landscape of clinical trials for CAR-T cell therapy targeting brain tumors, highlighting key advancements like novel target antigens and combinatorial strategies designed to address tumor heterogeneity and immunosuppression, with the goal of improving outcomes for patients with these aggressive cancers.
View Article and Find Full Text PDFCell Commun Signal
December 2024
Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
Chimeric antigen receptor T (CAR-T) cell therapy has shown remarkable success in hematologic malignancies but has encountered challenges in effectively treating solid tumors. One major obstacle is the presence of the immunosuppressive tumor microenvironment (TME), which is mainly built by myeloid-derived suppressor cells (MDSCs). Recent studies have shown that MDSCs have a detrimental effect on CAR-T cells due to their potent immunosuppressive capabilities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!