The gut microbiome impacts host health and fitness, in part through the diversification of gut metabolic function and pathogen protection. Elevations in glucocorticoids (GCs) appear to reduce gut microbiome diversity in experimental studies, suggesting that a loss of microbial diversity may be a negative consequence of increased GCs. However, given that ecological factors like food availability and population density may independently influence both GCs and microbial diversity, understanding how these factors structure the GC-microbiome relationship is crucial to interpreting its significance in wild populations. Here, we used an ecological framework to investigate the relationship between GCs and gut microbiome diversity in wild North American red squirrels (Tamiasciurus hudsonicus). As expected, higher GCs predicted lower gut microbiome diversity and an increase in metabolic taxa. Surprisingly, but in line with prior empirical studies on wild animals, gastrointestinal pathogens decreased as GCs increased. Both dietary heterogeneity and an upcoming food pulse exhibited direct effects on gut microbiome diversity, whereas conspecific density and reproductive activity impacted diversity indirectly via changes in host GCs. Our results provide evidence of a gut-brain axis in wild red squirrels and highlight the importance of situating the GC-gut microbiome relationship within an ecological framework.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8850573PMC
http://dx.doi.org/10.1038/s41598-022-06359-5DOI Listing

Publication Analysis

Top Keywords

gut microbiome
24
microbiome diversity
16
red squirrels
12
wild north
8
north american
8
american red
8
microbial diversity
8
ecological framework
8
gut
7
microbiome
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!