Disruption of the grid cell network in a mouse model of early Alzheimer's disease.

Nat Commun

Department of Psychiatry, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada.

Published: February 2022

Early-onset familial Alzheimer's disease (AD) is marked by an aggressive buildup of amyloid beta (Aβ) proteins, yet the neural circuit operations impacted during the initial stages of Aβ pathogenesis remain elusive. Here, we report a coding impairment of the medial entorhinal cortex (MEC) grid cell network in the J20 transgenic mouse model of familial AD that over-expresses Aβ throughout the hippocampus and entorhinal cortex. Grid cells showed reduced spatial periodicity, spatial stability, and synchrony with interneurons and head-direction cells. In contrast, the spatial coding of non-grid cells within the MEC, and place cells within the hippocampus, remained intact. Grid cell deficits emerged at the earliest incidence of Aβ fibril deposition and coincided with impaired spatial memory performance in a path integration task. These results demonstrate that widespread Aβ-mediated damage to the entorhinal-hippocampal circuit results in an early impairment of the entorhinal grid cell network.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8850598PMC
http://dx.doi.org/10.1038/s41467-022-28551-xDOI Listing

Publication Analysis

Top Keywords

grid cell
16
cell network
12
mouse model
8
alzheimer's disease
8
entorhinal cortex
8
disruption grid
4
cell
4
network mouse
4
model early
4
early alzheimer's
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!