Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: With its large surface area, skin facilitates a topical administration of active ingredients, and thus percutaneous delivery to a specific target site. Due to its high barrier function and different diffusion characteristics, skin governs the efficacy of these active ingredients and a bioavailability in the epidermal and dermal tissue.
Objective: In order to characterize the vertical and lateral movement of molecules into and inside the skin, the diffusivity of active ingredients with different physicochemical properties and their penetration ability in different dermal skin layers was investigated.
Methods: A novel lateral dermal microdialysis (MD) penetration setup was used to compare the diffusion characteristics of active ingredients into superficial and deep-implanted MD membranes in porcine skin. The corresponding membrane depth was determined via ultrasound and the active ingredients concentration via high-pressure liquid chromatography measurement.
Results: The depth depended penetration of superficial and deep-implanted MD membranes and the quantitative diffusivity of two active ingredients was compared. An experimental lateral MD setup was used to determine the influence of percutaneous skin penetration characteristics of an active ingredient with different lipophilic and hydrophilic characteristics. Therefore, hydrophilic caffeine and lipophilic LIP1, which have an identical molecular weight but different lipophilic characteristics, were tested for their penetration ability inside a propylene glycol and oleic acid formulation.
Conclusion: The vertical and lateral penetration movement of caffeine was found to exceed that of LIP1 through the hydrophilic dermal environment. The findings of this study show that the lipophilicity of active ingredients influences the penetration movement and that skin enables a conical increasing lateral diffusivity and transdermal delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000522633 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!