Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The widely used surface-based biomolecule sensing scheme has greatly facilitated the investigation of protein-protein interactions in lab-on-a-chip microfluidic systems. However, in most biosensing schemes, the interactions are driven in a passive way: The overall sensing time and sensitivity are totally dependent on the Brownian diffusion process, which has greatly hindered their efficiency, especially at low concentration levels or single-molecule analysis. To break this limitation, we developed an all-optical active method termed optothermophoretic flipping (OTF). It is the first temporal modulated method that biomolecules were enriched and pushed to their counterparts for effective contact via a flipped thermophoresis. As a proof-of-concept experiment, we tested its performance via antibody-antigen binding on a surface plasmon resonance imaging (SPRi) platform. Compared with the interaction solely based on Brownian diffusion, we achieved a 23.6-fold sensitivity increment in biomolecule interactions sensing. This method has opened new opportunities for various biosensing platforms that require high-sensitivity in colloidal sciences and biochemical studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2022.114084 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!