Stiffness-Tunable Soft Gripper with Soft-Rigid Hybrid Actuation for Versatile Manipulations.

Soft Robot

Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China.

Published: December 2022

Highly flexible and environmentally adaptive soft robots have received considerable attention. There remains a demand for soft robots to realize the stiffness modulation and variable workspace for robust and versatile manipulations. This article presents a compact soft gripper with a polylactic acid-based variable stiffness module (VSM) and a rigid retractable mechanism to achieve soft-rigid hybrid actuation. The soft gripper can enhance its stiffness by 18-fold without sacrificing flexibility due to the VSM. A heating circuit is designed to divide the VSM into three regions. Each region can be activated separately for varying flexible segments to amplify the dexterity. Meanwhile, the water-cooling system accelerates the heat exchange, thus reducing the cooling time from ∼400 to 39 s. The rigid retractable mechanism can adjust the initial layout of the gripper to expand the workspace and perform manipulation by opening and closing fingers. The soft finger combined with stiffness tunability can maintain its deformation after being stiffened to realize morphing. Therefore, it can efficiently perform a grasp with a high load and avoid repeated heating and cooling, especially for items with a similar shape. The performance of the gripper is further validated by measuring the grasping force and grasping demonstration with various objects, showing its robustness and dexterity in versatile tasks.

Download full-text PDF

Source
http://dx.doi.org/10.1089/soro.2021.0025DOI Listing

Publication Analysis

Top Keywords

soft gripper
12
soft-rigid hybrid
8
hybrid actuation
8
versatile manipulations
8
soft robots
8
rigid retractable
8
retractable mechanism
8
gripper
5
soft
5
stiffness-tunable soft
4

Similar Publications

Article Synopsis
  • The study showcases improvements in electrohydrodynamic (EHD) pumps alongside a new 3D-printable organohydrogel designed for soft robotics.
  • Using advanced digital light processing (DLP) technology, the researchers created a manifold pump array that can generate 90.2 kPa of pressure and deliver a flow rate of 800 mL per minute, far exceeding the capabilities of traditional EHD systems.
  • The novel organohydrogel developed has a low swelling ratio, high stretchability, and durability under stress, making it ideal for dynamic applications in soft robotics, bioengineering, and vertical farming.
View Article and Find Full Text PDF

Research on the operational properties of the soft gripper pads.

Sci Rep

December 2024

Division of Mechatronic Devices, Institute of Mechanical Technology, Poznan University of Technology, 60-965, Poznan, Poland.

Grippers are commonly used as a technological tooling for manipulators. They enable robots to interact with objects in their work area. Grippers have a wide range of differentiation focused on the operation performed and the properties (e.

View Article and Find Full Text PDF

Decision-making based on environmental cues is a crucial feature of autonomous systems. Embodying this feature in soft robots poses nontrivial challenges on both hardware and software that can undermine the simplicity and autonomy of such devices. Existing pneumatic electronics-free soft robots have so far mostly been approached by using system fluidic circuit architectures analogous to digital electronics.

View Article and Find Full Text PDF

Recent Advances in 4D Printing: A Review of Current Smart Materials, Technologies, and Drug Delivery Systems.

Curr Pharm Des

December 2024

Institute of Pharmaceutical Research, GLA University, Mathura-Delhi Road, Mathura-281406, Uttar Pradesh, India.

Research on shape memory materials (SMM) or smart materials, along with advancements in printing technology, has transformed three-dimensional (3D) printing into what we now refer to as 4D printing. In this context, the addition of time as a fourth dimension enhances 3D printing. 4D printing involves the creation of 3D-printed objects that can change their shapes into complex geometries when influenced by external stimuli such as temperature, light, or pH over time.

View Article and Find Full Text PDF

High-performance eco-friendly soft actuators showing large displacement, fast response, and long-term operational capability require further development for next-generation bioinspired soft robots. Herein, we report an electro-ionic soft actuator based on carboxylated cellulose nanocrystals (CCNC) and carboxylated cellulose nanofibers (CCNF), graphene nanoplatelets (GN), and ionic liquid (IL). The actuator exhibited exceptional actuation performances, achieving large displacements ranging from 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!