Versatile Bilayer Hydrogel for Wound Dressing through PET-RAFT Polymerization.

Biomacromolecules

State Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.

Published: March 2022

Multifunctional hydrogel-based wound dressings have been explored for decades due to their huge potential in multifaceted medical intervention to wound healing. However, it is usually not easy to fabricate a single hydrogel with all of the desirable functions at one time. Herein, a bilayer model with an outer layer for hydrogel wound dressing was proposed. The inner layer (H-PN) was a hybrid hydrogel prepared by -isopropylacrylamide and chitosan--2-hydroxypropyl trimethylammonium chloride (HACC), and the outer layer (PVA-PAm) was prepared by polyvinyl alcohols and acrylamide. The two hydrogel layers of the bilayer model were covalently connected with excellent interfacial strength by photoinduced electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. The outer layer exposed to the ambient environment exhibited good stretchability and toughness, while the inner-layer hydrogel adhered to the skin exhibited excellent softness, antibacterial activity, thermoresponsivity, and biocompatibility. In particular, the inner layer of a hydrogel demonstrated excellent antibacterial capability toward both as Gram-positive bacteria and as Gram-negative bacteria. Cell cytotoxicity showed that the cell viability of all H-PN layer hydrogels exceeds 80%, confirming that the hydrogels bear excellent biocompatibility. In vivo experimental results indicated that the H-PN/PVA-PAm bilayer hydrogel has a significant effect on the acceleration of wound healing, which was demonstrated in a full-thickness skin defect model showing improved collagen disposition and granulation tissue thickness. With these results, the established multifunctional bilayer hydrogel exhibits potential as an excellent wound dressing for wound healing applications, especially for open and infected traumas.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.1c01428DOI Listing

Publication Analysis

Top Keywords

bilayer hydrogel
12
wound dressing
12
wound healing
12
outer layer
12
hydrogel
9
hydrogel wound
8
pet-raft polymerization
8
bilayer model
8
layer hydrogel
8
inner layer
8

Similar Publications

Composite barrier membrane for bone regeneration: advancing biomaterial strategies in defect repair.

RSC Adv

January 2025

School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneratioon, Shandong Provincial Clinical Research Center for Oral Diseases Ji'nan 250012 China

Bone defects represent a significant challenge in clinical practice, driving the need for innovative solutions that effectively support bone regeneration. Barrier membranes, due to playing a critical role in creating an environment conducive to bone regeneration by preventing the infiltration of non-osteogenic tissues, are widely applied to bone repair. However, inadequate spatial stability and osteogenesis-promoting ability often limit current barrier membranes.

View Article and Find Full Text PDF

This study presents a novel in vitro bilayer 3D co-culture platform designed to obtain cancer-associated fibroblasts (CAFs)-like cells. The platform consists of a bilayer hydrogel structure with a collagen/polyethylene glycol (PEG) hydrogel for fibroblasts as the upper layer and an alginate hydrogel for tumor cells as the lower layer. The platform enabled paracrine interactions between fibroblasts and cancer cells, which allowed for selective retrieval of activated fibroblasts through collagenase treatment for further study.

View Article and Find Full Text PDF

Fast fabrication of stimuli-responsive MXene-based hydrogels for high-performance actuators with simultaneous actuation and self-sensing capability.

J Colloid Interface Sci

January 2025

Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037 China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037 China. Electronic address:

Poly(N-isopropylacrylamide) (PNIPAM) composite hydrogels have recently emerged as promising candidates for soft hydrogel actuators. However, developing a facile and fast method to obtain multifunctional PNIPAM hydrogel actuators with simulating biological versatility remains a major challenge. Herein, we developed a fast-redox initiation system to prepare PNIPAM/sodium carboxymethyl cellulose (CMC)/TCT MXene nanocomposite hydrogel with multidirectional actuating behaviors and improved mechanical properties.

View Article and Find Full Text PDF

3D printed biomimetic bilayer limbal implants for regeneration of the corneal structure in limbal stem cell deficiency.

Acta Biomater

January 2025

Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China. Electronic address:

Limbal stem cell deficiency (LSCD) causes vision loss and is often treated by simple corneal epithelial cell transplantation with poor long-term efficiency. Here, we present a biomimetic bilayer limbal implant using digital light processing 3D printing technology with gelatin methacrylate (GelMA) and poly (ethylene glycol) diacrylate (PEGDA) bioinks containing corneal epithelial cells (CECs) and corneal stromal stem cells (CSSCs), which can transplant CECs and improve the limbal niche simultaneously. The GelMA/PEGDA hydrogel possessed robust mechanical properties to support surgical transplantation and had good transparency, suitable swelling and degradation rate as a corneal implant.

View Article and Find Full Text PDF

A self-sustained moist-electric generator with enhanced energy density and longevity through a bilayer approach.

Mater Horiz

January 2025

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.

Although MEG is being developed as a green renewable energy technology, there remains significant room for improvement in self-sustained power supply, generation duration, and energy density. In this study, we present a self-sustained, high-performance MEG device with a bilayer structure. The lower hydrogel layer incorporates graphene oxide (GO) and carbon nanotubes (CNTs) as the active materials, whereas the upper aerogel layer is comprised of pyrrole-modified graphene oxide (PGO).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!