A π-Stacking Based Fluorescent Probe for Labeling of Flavin Analogues in Live Cells through Unusual FRET Process.

Anal Chem

Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research, JIS University, Arch Waterfront, GP Block, Sector V, Bidhannagar, Kolkata, India 700091.

Published: March 2022

The flavin adenine dinucleotide (FAD) is an indispensable coenzyme in live cells. It acts as a catalyst in many redox responsive metabolic reactions, including oxidative phosphorylation in mitochondria. The real-time monitoring of flavin is important to understand the disorder in the metabolic process, redox system, etc. Thus, we have developed a fluorescent probe that noncovalently binds with flavin to exhibit the FRET process. H- NMR and docking study indicated that there is a strong hydrophobic interaction between flavins and . Also, a π-π stacking between isoalloxazine ring in flavin and quinoline and coumarin moieties of favors self-assembly. The nontoxic probe could distinguish cancer cells from normal cells based on expressions of endogenous FAD.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.1c04024DOI Listing

Publication Analysis

Top Keywords

fluorescent probe
8
live cells
8
fret process
8
flavin
5
π-stacking based
4
based fluorescent
4
probe labeling
4
labeling flavin
4
flavin analogues
4
analogues live
4

Similar Publications

Clinical confocal laser endomicroscopy for imaging of autofluorescence signals of human brain tumors and non-tumor brain.

J Cancer Res Clin Oncol

December 2024

Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.

Purpose: Analysis of autofluorescence holds promise for brain tumor delineation and diagnosis. Therefore, we investigated the potential of a commercial confocal laser scanning endomicroscopy (CLE) system for clinical imaging of brain tumors.

Methods: A clinical CLE system with fiber probe and 488 nm laser excitation was used to acquire images of tissue autofluorescence.

View Article and Find Full Text PDF

Design and Use of AsLOV2-Based Optogenetic Tools for Actin Imaging.

Methods Mol Biol

December 2024

Department of Biochemistry and Molecular Biology & The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.

We present protocols for using an optogenetic tool called LILAC for actin imaging. LILAC is a light-controlled version of Lifeact that uses the Avena sativa LOV2 (AsLOV2) domain. By significantly reducing Lifeact's affinity for the cytoskeleton in the dark, LILAC reduces concentration-dependent negative side effects while enabling new image processing methods.

View Article and Find Full Text PDF

We synthesized a squaraine dye (F-0) to develop a method for detecting pyrophosphate (PPi) and alkaline phosphatase (ALP) by modulating the fluorescence of F-0. The fluorescence intensity of the F-0 system was quenched upon the addition of Cu ions; however, it was restored when PPi was introduced due to the formation of a complex between PPi and Cu. Since ALP can hydrolyze PPi, the fluorescence of the system was quenched again upon the addition of ALP.

View Article and Find Full Text PDF

pH and peroxynitrite (ONOO) are two critical biomarkers to unveil the corresponding status of endoplasmic reticulum (ER) stress and mitochondrial dysfunction, which are closely related to Alzheimer's disease (AD). Simultaneously monitoring pH and ONOO fluctuations in the ER and mitochondria during AD progression is pivotal for clarifying the interplay between the disorders of the two organelles and revealing AD pathogenesis. Herein, we designed and synthesized a dual-channel fluorescent probe (DCFP) to visualize pH and ONOO in the ER and mitochondria.

View Article and Find Full Text PDF

High-Efficiency Fluorescent-Coupled Optical Fiber Passive Tactile Sensor with Integrated Microlens for Surface Texture and Roughness Detection.

ACS Appl Mater Interfaces

December 2024

College of Electrical and Information Engineering, SANYA Offshore Oil and Gas Research Institute, Northeast Petroleum University, Daqing 163318, China.

Integrating ZnS:Cu@AlO/polydimethylsiloxane (PDMS) flexible matrices with optical fibers is crucial for the development of practical passive sensors. However, the fluorescence coupling efficiency is constrained by the small numerical aperture of the fiber, leading to a reduction in sensor sensitivity. To mitigate this limitation, a microsphere lens was fabricated at the end of the multimode fiber, which resulted in a 21.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!