Nonenzymatic biosensors do not require enzyme immobilization nor face degradation problem. Hence, nonenzymatic biosensors have recently attracted growing attention due to the stability and reproducibility. Here, a comparative study was conducted to quantitatively evaluate the glucose sensing of pure/oxidized Ni, Co, and their bimetal nanostructures grown on electrospun carbon nanofibers (ECNFs) to provide a low-cost free-standing electrode. The prepared nanostructures exhibited sensitivity (from 66.28 to 610.6 μA mM cm), linear range of 2-10 mM, limit of detection in the range of 1 mM, and the response time (< 5 s), besides outstanding selectivity and applicability for glucose detection in the human serum. Moreover, the oxidizable interfering species, such as ascorbic acid (AA), uric acid (UA), and dopamine (DA), did not cause interference. Co-C and Ni-C phase diagrams, solid-state diffusion phenomena, and rearrangement of dissolved C atoms after migration from metal particles were discussed. This study undoubtedly provides new prospects on the nonenzymatic biosensing performance of mono-metal, bimetal, and oxide compounds of Ni and Co elements, which could be quite helpful for the fabrication of biomolecules detecting devices.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-022-03833-8DOI Listing

Publication Analysis

Top Keywords

electrospun carbon
8
carbon nanofibers
8
nonenzymatic biosensors
8
improving nonenzymatic
4
nonenzymatic biosensing
4
biosensing performance
4
performance electrospun
4
nanofibers decorated
4
decorated ni/co
4
ni/co particles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!