Insect herbivores and plant-parasitic nematodes are global, economically devastating pests that are present in nearly every crop and natural system worldwide. Although they may be spatially separated, they indirectly interact with each other by altering both plant chemical defense and nutrition. However, the outcome of these interactions is highly variable across different focal species. We performed a meta-analysis to determine how plant and nematode traits influence insect herbivore growth and reproduction, as well as nematode abundance and reproduction. We investigated how interactions between plant-parasitic nematodes and insect herbivores influence plant biomass, carbon, and nitrogen in the roots and shoots. We found no overall effect of nematodes on insect herbivores or insect herbivores on nematodes. However, while phloem-feeding insect reproduction was not affected by nematode feeding guild or plant family, chewing insect growth increased in the presence of cyst nematodes and decreased in the presence of gall nematodes. The effect of nematodes on chewing insect herbivore growth was also affected by the focal plant family. Nematode presence did not alter plant biomass when plants were exposed to aboveground insect herbivory, but carbon and nitrogen were higher in roots and nitrogen was higher in shoots of plants with nematodes and insects compared to plants with insects alone. Our results indicate that the mechanisms driving the outcome of aboveground-belowground interactions are still unclear, but those chewing insects may have more variable responses to nematode damage than phloem-feeders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/ee/nvab131 | DOI Listing |
Plants (Basel)
January 2025
Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kita 761-0795, Kagawa, Japan.
Kunth is native to tropical America and has invaded tropical and subtropical Asia and numerous Pacific Islands. It forms dense thickets and reduces native species diversity and populations in its introduced range. This invasive vine also seriously impacts many agricultural crops and is listed as one of the world's 100 worst invasive alien species.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Departamento de Ecologia, Universidade Federal de Sergipe, São Cristóvão 49107-230, Brazil.
Silicon (Si) is a widely recognized element in plant defense, often enhancing resistance to herbivory by strengthening cell walls and deterring feeding by external herbivores. However, its impact on internal, endophytic herbivores, such as gall-inducing insects, remains underexplored. This study investigates the role of silicon in , focusing on its effects on herbivory by insects.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Biological Sciences, Binghamton University, Binghamton, NY 13902, USA.
The breadth and depth of plant leaf metabolomes have been implicated in key interactions with plant enemies aboveground. In particular, divergence in plant species chemical composition-amongst neighbors, relatives, or both-is often suggested as a means of escape from insect herbivore enemies. Plants also experience strong pressure from enemies such as belowground pathogens; however, little work has been carried out to examine the evolutionary trajectories of species' specialized chemistries in both roots and leaves.
View Article and Find Full Text PDFMolecules
January 2025
Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Kagawa, Japan.
L. is native to tropical America and has naturalized in many other tropical, subtropical, and temperate regions in Asia, Africa, Oceania, North and South America, and Europe. infests diverse habitats with a wide range of climatic factors, and its population increases aggressively as one of the world's 100 worst invasive alien species.
View Article and Find Full Text PDFInsects
January 2025
Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture & Forestry of the North-Western Desert Oasis, Ministry of Agriculture and Rural Affairs, College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China.
Cadmium in agricultural soils has emerged as a substantial threat to crop health and yields through its bioaccumulation along the food chain, with further repercussions for the growth, development, and population dynamics of herbivorous insects. In this study, potted potato plants were treated with Cd solutions at concentrations of 0 mg/kg, 30 mg/kg, 60 mg/kg, 90 mg/kg, and 120 mg/kg. Colorado potato beetles () were fed on potato leaves exposed to these varying concentrations of cadmium, and the effects on their growth and development were assessed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!