Reelin is a secreted glycoprotein important for brain development and synaptic plasticity in the adult brain. Some reports suggest that Reelin is secreted from the nerve terminals and functions as a neurotransmitter. However, the mechanism of Reelin secretion is unknown. In this study, we visualized Reelin secretion by bioluminescence imaging using a fusion protein of Reelin and Gaussia luciferase (GLase-Reelin). GLase-Reelin expressed in HEK293T cells was correctly processed and secreted. Luminescence signals from the secreted GLase-Reelin of primary cultured neurons were visualized by bioluminescence microscopy. Reelin secretory events were observed at neurites and cell bodies. Bioluminescence imaging was also performed before and after KCl depolarization to compare the secretory events of Reelin and brain-derived neurotrophic factor (BDNF). The secretion of BDNF increased markedly shortly after depolarization. In contrast, the frequency of Reelin secretion did not change significantly by depolarization. Thus, Reelin secretion from neurites might not be regulated in a neuronal activity-dependent manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jb/mvac019 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!