The preparation of degradable polymeric nanomaterials with a high solid content and multiple morphologies is highly desirable but still challenging. Here, the RAFT dispersion polymerization of styrene and 5,6-benzo-2-methylene-1,3-dioxepane was demonstrated to achieve various morphologies, including spheres, vesicles, worms, and large compound vesicles, with a high solid content through polymerization-induced self-assembly, which opens up a new avenue for the preparation of degradable polymeric nanomaterials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cc00014hDOI Listing

Publication Analysis

Top Keywords

degradable polymeric
12
polymeric nanomaterials
12
high solid
12
solid content
12
nanomaterials high
8
content multiple
8
multiple morphologies
8
polymerization-induced self-assembly
8
preparation degradable
8
morphologies polymerization-induced
4

Similar Publications

Catechol redox maintenance in mussel adhesion.

Nat Rev Chem

January 2025

Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA.

Catechol-functionalized proteins in mussel holdfasts are essential for underwater adhesion and cohesion and have inspired countless synthetic polymeric materials and devices. However, as catechols are prone to oxidation, long-term performance and stability of these inventions awaits effective antioxidation strategies. In mussels, catechol-mediated interactions are stabilized by 'built-in' homeostatic redox reservoirs that restore catechols oxidized to quinones.

View Article and Find Full Text PDF

Lignin, as the abundant carbon polymer, is essential for carbon cycle and biorefinery. Microorganisms interact to form communities for lignin biodegradation, yet it is a challenge to understand such complex interactions. Here, we develop a coastal lignin-degrading bacterial consortium (LD), through "top-down" enrichment.

View Article and Find Full Text PDF

Tubulin detyrosination shapes cytoskeletal architecture and virulence.

Proc Natl Acad Sci U S A

January 2025

Maladies infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, University of Montpellier, CNRS, Institut de Recherche pour le Développement, Montpellier 34095, France.

Tubulin detyrosination has been implicated in various human disorders and is important for regulating microtubule dynamics. While in most organisms this modification is restricted to α-tubulin, in trypanosomatid parasites, it occurs on both α- and β-tubulin. Here, we show that in , a single vasohibin (LmVASH) enzyme is responsible for differential kinetics of α- and β-tubulin detyrosination.

View Article and Find Full Text PDF

A novel electrochemical aptasensor based on bimetallic zirconium and copper oxides embedded within mesoporous carbon (denoted as ZrOCuO@mC) was constructed to detect miRNA. The porous ZrOCuO@mC was created through the pyrolysis of bimetallic zirconium/copper-based metal-organic framework (ZrCu-MOF). The substantial surface area and high porosity of ZrOCuO@mC nanocomposite along with its robust affinity toward aptamer strands, facilitated the effective anchoring of aptamer strands on the ZrOCuO@mC-modified electrode surface.

View Article and Find Full Text PDF

Mitochondria represent pivotal cellular organelles endowed with multifaceted functionalities encompassing cellular respiration, metabolic processes, calcium turnover, and the regulation of apoptosis, primarily through the generation of reactive oxygen species (ROS). Perturbations in mitochondrial dynamics have been intricately linked to the etiology of numerous cardiovascular pathologies, such as heart failure, ischemic heart disease, and various cardiomyopathies. Notably, recent attention has been directed towards the detrimental impact of micro- and nanoplastic pollution on mitochondrial integrity, an area underscored by a paucity of comprehensive investigations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!