All-dielectric nanophotonic devices are promising candidates for future lossless (bio)sensing and telecommunication applications. Active all-dielectric magnetophotonic devices, where the optical properties can be controlled by an externally applied magnetic field, have triggered great research interest. However, magneto-optical (MO) effects are still low for applications. Here, we demonstrate a concept for the enhancement of the transverse MO Kerr effect (TMOKE), with amplitudes of up to 1.85, , close to the maximum theoretical values of ±2 (in transmission). Our concept exploits the lateral leaky Bloch-modes to enhance the TMOKE, under near-zero transmittance conditions. Potential applications in (bio)sensing structures are numerically demonstrated. The effects of optical losses were studied using different combinations of materials. Significantly, we demonstrate TMOKE enhancements of two orders of magnitude in relation to recent experimental studies, using the same building materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1cp05232b | DOI Listing |
ACS Appl Mater Interfaces
August 2024
National Institute of Telecommunications (Inatel), Santa Rita do Sapucaí, Minas Gerais 37540-000, Brazil.
All-dielectric magnetophotonic nanostructures are promising for integrated nanophotonic devices with high resolution and sensitivity, but their design requires computationally demanding electromagnetic simulations evaluated through trial and error. In this paper, we propose a machine-learning approach to accelerate the design of these nanostructures. Using a data set of 12 170 samples containing four geometric parameters of the nanostructure and the incidence wavelength, trained neural network and polynomial regression algorithms were capable of predicting the amplitude of the transverse magneto-optical Kerr effect (TMOKE) within a time frame of 10 s and mean square error below 4.
View Article and Find Full Text PDFNanophotonics
June 2022
Faculty of Physics, M. V. Lomonosov Moscow State University, 1 bld. 2 Leninskie Gory, 119991, Moscow, Russia.
In this work, we tackle the problem of the spatially selective optical excitation of spin dynamics in structures with multiple magnetic layers. The 120 fs circularly polarized laser pulses were used to launch magnetization precession in an all-dielectric magneto-photonic crystals (MPC) formed by magnetic layers sandwiched between and inside two magnetic Bragg mirrors. Optical pump-probe experiments reveal magnetization precession triggered via ultrafast inverse Faraday effect with an amplitude strongly dependent on the pump central wavelength: maxima of the amplitude are achieved for the wavelength tuned at the cavity resonance and at the edge of the photonic bandgap.
View Article and Find Full Text PDFPhys Chem Chem Phys
March 2022
National Institute of Telecommunications (Inatel), 37540-000, Santa Rita do Sapucaí, MG, Brazil.
All-dielectric nanophotonic devices are promising candidates for future lossless (bio)sensing and telecommunication applications. Active all-dielectric magnetophotonic devices, where the optical properties can be controlled by an externally applied magnetic field, have triggered great research interest. However, magneto-optical (MO) effects are still low for applications.
View Article and Find Full Text PDFWe demonstrate a novel all-dielectric magnetophotonic structure that consists of two-dimensional arrays of bismuth substituted iron-garnet nanocylinders supporting both localized (Fabry-Perot-like) and lattice (guided-like) optical modes. Simultaneous excitation of the two kinds of modes provides a significant enhancement of the Faraday effect by 3 times and transverse magneto-optical Kerr effect by an order of magnitude compared to the smooth magnetic film of the same effective thickness. Both magneto-optical effects are boosted in wide spectral and angular ranges making the nanocylinder array magnetic dielectric structures promising for applications with short and tightly focused laser pulses.
View Article and Find Full Text PDFSensors (Basel)
March 2021
Russian Quantum Center, 121205 Moscow, Russia.
We propose an all-dielectric magneto-photonic crystal with a hybrid magneto-optical response that allows for the simultaneous measurements of the surface and bulk refractive index of the analyzed substance. The approach is based on two different spectral features of the magneto-optical response corresponding to the resonances in p- and s-polarizations of the incident light. Angular spectra of p-polarized light have a step-like behavior near the total internal reflection angle which position is sensitive to the bulk refractive index.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!