We demonstrate a novel sensor platform with enhanced sensitivity and selectivity for detecting aflatoxin B1 - a common food toxin in cereals. The approach is based on a molecularly imprinted polymer film that provides selective binding of the aflatoxin B1 and fluorescence signal from the analyte molecule enhanced by the local electric field induced in close proximity to the surface of a silver nanoparticle excited at the localized surface plasmon resonance (LSPR) wavelength. Molecularly imprinted polymers (MIPs) with supramolecular aflatoxin-selective receptor sites and embedded spherical silver nanoparticles (with diameters 30-70 nm, the LSPR band 407 nm) were prepared in the form of a thin polymer film on the surface of a glass slide using polymerization. The detection limit of the sensor for aflatoxin B1 is 0.3 ng mL, which is significantly lower than for a fluorescent sensor without silver nanoparticles. The plasmon-enhanced fluorescence factor is 33, and the linear dynamic range of the sensor is 0.3-25 ng mL.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1an02173gDOI Listing

Publication Analysis

Top Keywords

plasmon-enhanced fluorescence
8
molecularly imprinted
8
polymer film
8
silver nanoparticles
8
sensor
5
highly-selective sensitive
4
sensitive plasmon-enhanced
4
fluorescence sensor
4
sensor aflatoxins
4
aflatoxins demonstrate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!