A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Superprotonic Conductivity of UiO-66 with Missing-Linker Defects in Aqua-Ammonia Vapor. | LitMetric

Superprotonic Conductivity of UiO-66 with Missing-Linker Defects in Aqua-Ammonia Vapor.

Inorg Chem

Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.

Published: February 2022

The design and preparation of proton-conducting metal-organic frameworks (MOFs) with superconductivity are of significance for the proton-exchange membrane fuel cell (PEMFC). Introducing functional structural defects to enhance proton conductivity is a good approach. Here, we synthesized a series of UiO-66 (first synthesized in the University of Oslo) with missing-linker defects and investigated the effect of defect numbers on the proton conductivity of the samples. Among them, 60-UiO-66-1.8 (60 represents the synthesis temperature and 1.8 the number of defects) prepared with 3-mercaptopropionic acid as a modulator has the best proton conductivity, which is 3 × 10 S cm at 100 °C and under 98% relative humidity (RH). The acidic sites induced by missing-linker defects further promote the chemisorption of ammonia molecules, resulting in the formation of a richer hydrogen-bond network and hence boosting the proton conductivity to 1.04 × 10 S cm at 80 °C, which is one of the highest values among the reported MOF-based proton conductor. Therefore, this work provides a new strategy for enhancing proton conduction in MOF-based materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.1c03231DOI Listing

Publication Analysis

Top Keywords

proton conductivity
16
missing-linker defects
12
proton
6
defects
5
superprotonic conductivity
4
conductivity uio-66
4
uio-66 missing-linker
4
defects aqua-ammonia
4
aqua-ammonia vapor
4
vapor design
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!